Matching Items (43)
Filtering by

Clear all filters

150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
150339-Thumbnail Image.png
Description
A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air

A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air that is stored in a tank at a particular pressure will be introduced during the compression stage of the engine cycle to reduce pump work. In the modified design the intake and exhaust valve timings are modified to achieve this process. The time required to fill the combustion chamber with compressed air to the storage pressure immediately before spark and the state of the air with respect to crank angle is modeled numerically using a crank step energy and mass balance model. The results are used to complete the engine cycle analysis based on air standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at the baseline storage conditions (280 psi, 70OF) the modified engine does not meet the imposed constraints of staying below the maximum pressure of the unmodified engine. A new storage pressure of 235 psi is recommended. This only provides a 7.7% increase in thermal efficiency for the same work output. The modification of this engine for this low efficiency gain is not recommended.
ContributorsJoy, Lijin (Author) / Trimble, Steve (Thesis advisor) / Davidson, Joseph (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
149873-Thumbnail Image.png
Description
Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the

Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the well known passive cooling technologies. The building's thermal mass can be cooled at night by ventilating the inside of the space with the relatively lower outdoor air temperatures, thereby maintaining lower indoor temperatures during the warmer daytime period. Numerous studies, both experimental and theoretical, have been performed and have shown the effectiveness of the method to significantly reduce air conditioning loads or improve comfort levels in those climates where the night time ambient air temperature drops below that of the indoor air. The impact of widespread adoption of night ventilation cooling can be substantial, given the large fraction of energy consumed by air conditioning of buildings (about 12-13% of the total electricity use in U.S. buildings). Night ventilation is relatively easy to implement with minimal design changes to existing buildings. Contemporary mathematical models to evaluate the performance of night ventilation are embedded in detailed whole building simulation tools which require a certain amount of expertise and is a time consuming approach. This research proposes a methodology incorporating two models, Heat Transfer model and Thermal Network model, to evaluate the effectiveness of night ventilation. This methodology is easier to use and the run time to evaluate the results is faster. Both these models are approximations of thermal coupling between thermal mass and night ventilation in buildings. These models are modifications of existing approaches meant to model dynamic thermal response in buildings subject to natural ventilation. Effectiveness of night ventilation was quantified by a parameter called the Discomfort Reduction Factor (DRF) which is the index of reduction of occupant discomfort levels during the day time from night ventilation. Daily and Monthly DRFs are calculated for two climate zones and three building heat capacities. It is verified that night ventilation is effective in seasons and regions when day temperatures are between 30 oC and 36 oC and night temperatures are below 20 oC. The accuracy of these models may be lower than using a detailed simulation program but the loss in accuracy in using these tools more than compensates for the insights provided and better transparency in the analysis approach and results obtained.
ContributorsEndurthy, Akhilesh Reddy (Author) / Reddy, T Agami (Thesis advisor) / Phelan, Patrick (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151323-Thumbnail Image.png
Description
This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of

This study investigates how well prominent behavioral theories from social psychology explain green purchasing behavior (GPB). I assess three prominent theories in terms of their suitability for GPB research, their attractiveness to GPB empiricists, and the strength of their empirical evidence when applied to GPB. First, a qualitative assessment of the Theory of Planned Behavior (TPB), Norm Activation Theory (NAT), and Value-Belief-Norm Theory (VBN) is conducted to evaluate a) how well the phenomenon and concepts in each theory match the characteristics of pro-environmental behavior and b) how well the assumptions made in each theory match common assumptions made in purchasing theory. Second, a quantitative assessment of these three theories is conducted in which r2 values and methodological parameters (e.g., sample size) are collected from a sample of 21 empirical studies on GPB to evaluate the accuracy and generalize-ability of empirical evidence. In the qualitative assessment, the results show each theory has its advantages and disadvantages. The results also provide a theoretically-grounded roadmap for modifying each theory to be more suitable for GPB research. In the quantitative assessment, the TPB outperforms the other two theories in every aspect taken into consideration. It proves to 1) create the most accurate models 2) be supported by the most generalize-able empirical evidence and 3) be the most attractive theory to empiricists. Although the TPB establishes itself as the best foundational theory for an empiricist to start from, it's clear that a more comprehensive model is needed to achieve consistent results and improve our understanding of GPB. NAT and the Theory of Interpersonal Behavior (TIB) offer pathways to extend the TPB. The TIB seems particularly apt for this endeavor, while VBN does not appear to have much to offer. Overall, the TPB has already proven to hold a relatively high predictive value. But with the state of ecosystem services continuing to decline on a global scale, it's important for models of GPB to become more accurate and reliable. Better models have the capacity to help marketing professionals, product developers, and policy makers develop strategies for encouraging consumers to buy green products.
ContributorsRedd, Thomas Christopher (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / Darnall, Nicole (Committee member) / Arizona State University (Publisher)
Created2012
150422-Thumbnail Image.png
Description
Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing

Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing U.S. building energy use commercial sector buildings must be improved. Energy benchmarking of buildings gives the facility manager or the building owner a quick evaluation of energy use and the potential for energy savings. It is the process of comparing the energy performance of a building to standards and codes, to a set target performance or to a range of energy performance values of similar buildings in order to help assess opportunities for improvement. Commissioning of buildings is the process of ensuring that systems are designed, installed, functionally tested and capable of being operated and maintained according to the owner's operational needs. It is the first stage in the building upgrade process after it has been assessed using benchmarking tools. The staged approach accounts for the interactions among all the energy flows in a building and produces a systematic method for planning upgrades that increase energy savings. This research compares and analyzes selected benchmarking and retrocommissioning tools to validate their accuracy such that they could be used in the initial audit process of a building. The benchmarking study analyzes the Energy Use Intensities (EUIs) and Ratings assigned by Portfolio Manager and Oak Ridge National Laboratory (ORNL) Spreadsheets. The 90.1 Prototype models and Commercial Reference Building model for Large Office building type were used for this comparative analysis. A case-study building from the DOE - funded Energize Phoenix program was also benchmarked for its EUI and rating. The retrocommissioning study was conducted by modeling these prototype models and the case-study building in the Facility Energy Decision System (FEDS) tool to simulate their energy consumption and analyze the retrofits suggested by the tool. The results of the benchmarking study proved that a benchmarking tool could be used as a first step in the audit process, encouraging the building owner to conduct an energy audit and realize the energy savings potential. The retrocommissioning study established the validity of FEDS as an accurate tool to simulate a building for its energy performance using basic inputs and to accurately predict the energy savings achieved by the retrofits recommended on the basis of maximum LCC savings.
ContributorsAgnihotri, Shreya Prabodhkumar (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
150904-Thumbnail Image.png
Description
Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found

Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found in ecolabel criteria and the implications they have within the life cycle of a product. A life cycle assessment (LCA) case study of cosmetic products is used in comparison with current ecolabel program criteria to assess whether or not ecolabels are effectively driving environmental improvements in high impact areas throughout the life cycle of a product. Focus is placed on determining the general issues addressed by ecolabelling criteria and how these issues relate to hotspots derived through a practiced scientific methodology. Through this analysis, it was determined that a majority the top performing supply chain environmental impacts are covered, in some fashion, within ecolabelling criteria, but some, such as agricultural land occupation, are covered to a lesser extent or not at all. Additional criteria are suggested to fill the gaps found in ecolabelling programs and better address the environmental impacts most pertinent to the supply chain. Ecolabels have also been found to have a broader coverage then what can currently be addressed using LCA. The results of this analysis have led to a set of recommendations for furthering the integration between ecolabels and life cycle tools.
ContributorsBernardo, Melissa (Author) / Dooley, Kevin (Thesis advisor) / Chester, Mikhail (Thesis advisor) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2012
150979-Thumbnail Image.png
Description
I present a new framework for qualitative assessment of the current green purchasing practices of U.S. state governments. Increasing demand from citizens for green public purchasing has prompted state governments to adopt new, and improve existing, practices. Yet there has been little assessment of public green purchasing in academic research;

I present a new framework for qualitative assessment of the current green purchasing practices of U.S. state governments. Increasing demand from citizens for green public purchasing has prompted state governments to adopt new, and improve existing, practices. Yet there has been little assessment of public green purchasing in academic research; what has been done has not provided the conceptual support necessary to assess green purchasing practices as a single component of the procurement process. My research aims to fill that gap by developing a conceptual framework with which to assess the status of green purchasing practices and by applying this framework to determine and describe the status of green purchasing in the five most populous U.S. states. The framework looks at state purchasing practices through the lenses of policy, policy implementation, and transparency.
ContributorsSharma, Lucky (Author) / Melnick, Rob (Thesis advisor) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / Arizona State University (Publisher)
Created2012
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
149408-Thumbnail Image.png
Description
This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare

This study analyzes the thermoelectric phenomena of nanoparticle suspensions, which are composed of liquid and solid nanoparticles that show a relatively stable Seebeck coefficient as bulk solids near room temperature. The approach is to explore the thermoelectric character of the nanoparticle suspensions, predict the outcome of the experiment and compare the experimental data with anticipated results. In the experiment, the nanoparticle suspension is contained in a 15cm*2.5cm*2.5cm glass container, the temperature gradient ranges from 20 °C to 60 °C, and room temperature fluctuates from 20 °C to 23°C. The measured nanoparticles include multiwall carbon nanotubes, aluminum dioxide and bismuth telluride. A temperature gradient from 20 °C to 60 °C is imposed along the length of the container, and the resulting voltage (if any) is measured. Both heating and cooling processes are measured. With three different nanoparticle suspensions (carbon nano tubes, Al2O3 nanoparticles and Bi2Te3 nanoparticles), the correlation between temperature gradient and voltage is correspondingly 8%, 38% and 96%. A comparison of results calculated from the bulk Seebeck coefficients with our measured results indicate that the Seebeck coefficient measured for each suspension is much more than anticipated, which indicates that the thermophoresis effect could have enhanced the voltage. Further research with a closed-loop system might be able to affirm the results of this study.
ContributorsZhu, Moxuan (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2010