Matching Items (12)
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151532-Thumbnail Image.png
Description
Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the

Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine. Since the purge air influences the disk cavity flow field and effectively the amount of ingestion, the aim of this work was to study the cavity velocity field experimentally using Particle Image Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set-up that featured blades as well as vanes, with purge air supplied at the hub of the rotor-stator disk cavity. Along with the rotor and stator rim seals, an inner labyrinth seal was provided which split the disk cavity into a rim cavity and an inner cavity. First, static gage pressure distribution was measured to ensure that nominally steady flow conditions had been achieved. The PIV experiments were then performed to map the velocity field on the radial-tangential plane within the rim cavity at four axial locations. Instantaneous velocity maps obtained by PIV were analyzed sector-by-sector to understand the rim cavity flow field. It was observed that the tangential velocity dominated the cavity flow at low purge air flow rate, its dominance decreasing with increase in the purge air flow rate. Radially inboard of the rim cavity, negative radial velocity near the stator surface and positive radial velocity near the rotor surface indicated the presence of a recirculation region in the cavity whose radial extent increased with increase in the purge air flow rate. Qualitative flow streamline patterns are plotted within the rim cavity for different experimental conditions by combining the PIV map information with ingestion measurements within the cavity as reported in Thiagarajan (2013).
ContributorsPathak, Parag (Author) / Roy, Ramendra P (Thesis advisor) / Calhoun, Ronald (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2013
Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
Description
As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.
ContributorsOvermann, William (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Taylor, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150422-Thumbnail Image.png
Description
Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing

Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing U.S. building energy use commercial sector buildings must be improved. Energy benchmarking of buildings gives the facility manager or the building owner a quick evaluation of energy use and the potential for energy savings. It is the process of comparing the energy performance of a building to standards and codes, to a set target performance or to a range of energy performance values of similar buildings in order to help assess opportunities for improvement. Commissioning of buildings is the process of ensuring that systems are designed, installed, functionally tested and capable of being operated and maintained according to the owner's operational needs. It is the first stage in the building upgrade process after it has been assessed using benchmarking tools. The staged approach accounts for the interactions among all the energy flows in a building and produces a systematic method for planning upgrades that increase energy savings. This research compares and analyzes selected benchmarking and retrocommissioning tools to validate their accuracy such that they could be used in the initial audit process of a building. The benchmarking study analyzes the Energy Use Intensities (EUIs) and Ratings assigned by Portfolio Manager and Oak Ridge National Laboratory (ORNL) Spreadsheets. The 90.1 Prototype models and Commercial Reference Building model for Large Office building type were used for this comparative analysis. A case-study building from the DOE - funded Energize Phoenix program was also benchmarked for its EUI and rating. The retrocommissioning study was conducted by modeling these prototype models and the case-study building in the Facility Energy Decision System (FEDS) tool to simulate their energy consumption and analyze the retrofits suggested by the tool. The results of the benchmarking study proved that a benchmarking tool could be used as a first step in the audit process, encouraging the building owner to conduct an energy audit and realize the energy savings potential. The retrocommissioning study established the validity of FEDS as an accurate tool to simulate a building for its energy performance using basic inputs and to accurately predict the energy savings achieved by the retrofits recommended on the basis of maximum LCC savings.
ContributorsAgnihotri, Shreya Prabodhkumar (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
154129-Thumbnail Image.png
Description
Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface

Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface temperature has a microclimatic effect on the air temperature above it. A major increase in local air temperature is caused by heating of solid surfaces in that locality. A case study was done and correlations have been established to calculate the air temperature above a paved surface. Validation with in-situ pavement surface and air temperatures were made. Experimental measurement for the city of Phoenix shows the difference between the ambient air temperature of the city and the microclimatic air temperature above the pavement is approximately 10 degrees Fahrenheit. One mitigation strategy that has been explored is increasing the albedo of the paved surface. Although it will reduce the pavement surface temperature, leading to a reduction in air temperature close to the surface, the increased pavement albedo will also result in greater reflected solar radiation directed towards the building, thus increasing the building solar load. The first effect will imply a reduction in the building energy consumption, while the second effect will imply an increase in the building energy consumption. Simulation is done using the EnergyPlus tool, to find the microclimatic effect of pavement on the building energy performance. The results indicate the cooling energy savings of an office building for different types of pavements can be variable as much as 30%.
ContributorsSengupta, Shawli (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
156208-Thumbnail Image.png
Description
In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or

In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or heating technologies to meet this need. The concept of thermal energy storage (TES), as noted by many authors, is a promising way to rectify indoor temperature fluctuations. Due to its high energy density and the use of latent energy, Phase Change Materials (PCMs) are an efficient choice to use as TES. A question that has not satisfactorily been addressed, however, is the optimum location of PCM. In other words, given a constant PCM mass, where is the best location for it in a building? This thesis addresses this question by positioning PCM to obtain maximum energy savings and peak time delay. This study is divided into three parts. The first part is to understand the thermal behavior of building surfaces, using EnergyPlus software. For analysis, a commercial prototype building model for a small office in Phoenix, provided by the U.S. Department of Energy, is applied and the weather location file for Phoenix, Arizona is also used. The second part is to justify the best location, which is obtained from EnergyPlus, using a transient grey box building model. For that we have developed a Resistance-Capacitance (RC) thermal network and studied the thermal profile of a building in Phoenix. The final part is to find the best location for PCMs in buildings using EnergyPlus software. In this part, the mass of PCM used in each location remains unchanged. This part also includes the impact of the PCM mass on the optimized location and how the peak shift varies. From the analysis, it is observed that the ceiling is the best location to install PCM for yielding the maximum reduction in HVAC energy consumption for a hot, arid climate like Phoenix.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Phelan, Patrick (Thesis advisor) / Wang, Robert (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
156680-Thumbnail Image.png
Description
One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated,

One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated, and managed such that its environmental impacts and costs are minimal (energy efficient design and operation), and also be designed and configured in a way that it is resilient in confronting disruptions posed by natural, manmade, or random events. In this regard, development of quantitative sustainability metrics in support of decision-making relevant to design, future growth planning, and day-to-day operation of such systems would be of great value. In this study, a pragmatic performance-based sustainability assessment framework and quantitative indices are developed towards this end whereby sustainability goals and concepts can be translated and integrated into engineering practices.

New quantitative sustainability indices are proposed to capture the energy system environmental impacts, economic performance, and resilience attributes, characterized by normalized environmental/health externalities, energy costs, and penalty costs respectively. A comprehensive Life Cycle Assessment is proposed which includes externalities due to emissions from different supply and demand-side energy systems specific to the regional power generation energy portfolio mix. An approach based on external costs, i.e. the monetized health and environmental impacts, was used to quantify adverse consequences associated with different energy system components.

Further, this thesis also proposes a new performance-based method for characterizing and assessing resilience of multi-functional demand-side engineered systems. Through modeling of system response to potential internal and external failures during different operational temporal periods reflective of diurnal variation in loads and services, the proposed methodology quantifies resilience of the system based on imposed penalty costs to the system stakeholders due to undelivered or interrupted services and/or non-optimal system performance.

A conceptual diagram called “Sustainability Compass” is also proposed which facilitates communicating the assessment results and allow better decision-analysis through illustration of different system attributes and trade-offs between different alternatives. The proposed methodologies have been illustrated using end-use monitored data for whole year operation of a university campus energy system.
ContributorsMoslehi, Salim (Author) / Reddy, T. Agami (Thesis advisor) / Lackner, Klaus S (Committee member) / Parrish, Kristen (Committee member) / Pendyala, Ram M. (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2018
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
149432-Thumbnail Image.png
Description
Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas into the rotor-stator cavities of turbine stages affects the durability of rotor disks. This transport is usually countered by installing seals on the rotor and

Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas into the rotor-stator cavities of turbine stages affects the durability of rotor disks. This transport is usually countered by installing seals on the rotor and stator disk rims and by pressurizing the cavities by injecting air (purge gas) bled from the compressor discharge. The configuration of the rim seals influences the magnitude of main gas ingestion as well as the interaction of the purge gas with the main gas. The latter has aerodynamic and hub endwall heat transfer implications in the main gas path. In the present work, experiments were performed on model single-stage and 1.5-stage axial-flow turbines. The turbines featured vanes, blades, and rim seals on both the rotor and stator disks. Three different rim seal geometries, viz., axially overlapping radial clearance rim seals for the single-stage turbine cavity and the 1.5-stage turbine aft cavity, and a rim seal with angular clearance for the single-stage turbine cavity were studied. In the single-stage turbine, an inner seal radially inboard in the cavity was also provided; this effectively divided the disk cavity into a rim cavity and an inner cavity. For the aft rotor-stator cavity of the 1.5-stage turbine, a labyrinth seal was provided radially inboard, again creating a rim cavity and an inner cavity. Measurement results of time-average main gas ingestion into the cavities using tracer gas (CO2), and ensemble-averaged trajectories of the purge gas flowing out through the rim seal gap into the main gas path using particle image velocimetry are presented. For both turbines, significant ingestion occurred only in the rim cavity. The inner cavity was almost completely sealed by the inner seal, at all purge gas flow rates for the single-stage turbine and at the higher purge gas flow rates for 1.5-stage turbine. Purge gas egress trajectory was found to depend on main gas and purge gas flow rates, the rim seal configuration, and the azimuthal location of the trajectory mapping plane with respect to the vanes.
ContributorsBalasubramanian, Jagdish Harihara (Author) / Roy, Ramendra P (Thesis advisor) / Lee, Taewoo (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2010