Matching Items (6)
Filtering by

Clear all filters

156589-Thumbnail Image.png
Description
The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV

The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV modules lying in the landfills by 2050, that may not become a not-so-sustainable way of sourcing energy since all PV modules could contain certain amount of toxic substances. Currently in the United States, PV modules are categorized as general waste and can be disposed in landfills. However, potential leaching of toxic chemicals and materials, if any, from broken end-of-life modules may pose health or environmental risks. There is no standard procedure to remove samples from PV modules for chemical toxicity testing in the Toxicity Characteristic Leaching Procedure (TCLP) laboratories as per EPA 1311 standard. The main objective of this thesis is to develop an unbiased sampling approach for the TCLP testing of PV modules. The TCLP testing was concentrated only for the laminate part of the modules, as they are already existing recycling technologies for the frame and junction box components of PV modules. Four different sample removal methods have been applied to the laminates of five different module manufacturers: coring approach, cell-cut approach, strip-cut approach, and hybrid approach. These removed samples were sent to two different TCLP laboratories, and TCLP results were tested for repeatability within a lab and reproducibility between the labs. The pros and cons of each sample removal method have been explored and the influence of sample removal methods on the variability of TCLP results has been discussed. To reduce the variability of TCLP results to an acceptable level, additional improvements in the coring approach, the best of the four tested options, are still needed.
ContributorsLeslie, Joswin (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
154996-Thumbnail Image.png
Description
For decades, load shifting control, one of the most effective peak demand management methods, has attracted attention from both researchers and engineers. Various load shifting controls have been developed and introduced in mainly commercial buildings. Utility companies typically penalize consumers with “demand rates”. This along with increased

For decades, load shifting control, one of the most effective peak demand management methods, has attracted attention from both researchers and engineers. Various load shifting controls have been developed and introduced in mainly commercial buildings. Utility companies typically penalize consumers with “demand rates”. This along with increased population and increased customer energy demand will only increase the need for load shifting. There have been many white papers, thesis papers and case studies written on the different types of Thermal Energy Storage and their uses. Previous papers have been written by Engineers, Manufacturers and Researchers. This thesis paper is unique because it will be presented from the application and applied perspective of the Facilities Manager. There is a need in the field of Facilities Management for relevant applications. This paper will present and discuss the methodology, process applications and challenges of load shifting using (TES) Thermal Energy Storage, mainly ice storage.
ContributorsWhitcraft, Daniel S (Author) / Sullivan, Kenneth (Thesis advisor) / Okamura, Patrick (Committee member) / Slife, Curtis (Committee member) / Arizona State University (Publisher)
Created2016
149458-Thumbnail Image.png
Description
With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs

With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs help reduce the impact of a facility and bring about several environmental benefits including but not limited to energy conservation, water conservation and material conservation. In addition to various environmental benefits, green building programs can help companies become more efficient. The problem is that organizations are not always successful in their pursuits to achieve sustainability goals. It frequently take years to implement a program, and in many cases the goals for sustainability never come to fruition, when in the mean time resources are wasted, money is spent needlessly and opportunities are lost forever. This thesis addresses how the Six Sigma methodologies used by so many to implement change in their organizations could be applied to the LEED-EB program to help companies achieve sustainability results. A qualitative analysis of the Six Sigma methodologies was performed to determine if and how a LEED-EB program might utilize such methods. The two programs were found to be compatible and several areas for improvements to implementing a LEED-EB program were identified.
ContributorsFurphy, Kimberly (Author) / Hild, Nicholas (Thesis advisor) / Olson, Larry (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2010
158418-Thumbnail Image.png
Description
In recent years, many school districts, community colleges, and universities in California have implemented energy management-as-a-service (EMaaS). The purpose of this study was to analyzes how EMaaS has been realized in California schools, including how performance expectations and service guarantees have been met, how value is created and captured, and

In recent years, many school districts, community colleges, and universities in California have implemented energy management-as-a-service (EMaaS). The purpose of this study was to analyzes how EMaaS has been realized in California schools, including how performance expectations and service guarantees have been met, how value is created and captured, and which trends are emerging in the pay-for-performance models. This study used a qualitative research design to identify patterns in the collected data and allow theories to be drawn from the emergent categories and themes. Ten in-depth interviews were conducted with a diverse pool of facility managers, energy practitioners, superintendents, and associate superintendents working with EMaaS. Four themes emerged (1) peak shaving overperformance, (2) low risk/reward, (3) performance exactly as expected, and (4) hope in future flexibility. This study reveals medium to high levels of performance satisfaction from the customers of cloud-enabled and battery-based EMaaS in California schools. Value has been captured primarily through peak shaving and intelligent bill management. Large campuses with higher peaks are especially good at delivering energy savings, and in some instances without pairing batteries and solar. Where demand response participation is permitted by the utility companies, the quality of demand response performance is mixed, with performance being exactly as expected to slightly less than expected. The EMaaS business model is positioned to help California schools implement and achieve many of their future sustainability goals in a cost-effective way.
ContributorsHawkins, Spencer (Author) / Sullivan, Kenneth (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2020
171936-Thumbnail Image.png
Description
Although Saudi Arabia is moving towards a sustainable future, Existing residential buildings in the country are extremely unsustainable. Therefore, there is a necessity for greening the existing residential building. Mostadam green rating systems was developed by the Saudi ministry of housing in 2019 to address the long-term sustainability vision in

Although Saudi Arabia is moving towards a sustainable future, Existing residential buildings in the country are extremely unsustainable. Therefore, there is a necessity for greening the existing residential building. Mostadam green rating systems was developed by the Saudi ministry of housing in 2019 to address the long-term sustainability vision in residential buildings in the country. By setting Mostadam requirements as an objective of the retrofit process, it will ensure that the building achieve sustainability. However, Mostadam is new and there is a lack of knowledge of implementing its requirements on existing buildings. The aim of this research is to develop a framework to green existing residential buildings in Saudi Arabia to achieve Mostadam energy and water minimum requirements. The framework was developed based on an extensive keyword-based search and an analysis of 92 relevant research. The process starts with assessing the building against the minimum requirements of energy and water of Mostadam. After that, optimization phase is conducted. Building information modelling is used in the optimization phase. Energy and water efficiency optimization measures are identified from the analysed literature. Revit is used in the base model authoring and Green building studio cloud is used to simulate the energy and water efficiency measures. Then, payback period is calculated for all the efficiency measured to assess the decision making. A case study of a villa in Riyadh, Saudi Arabia is provided. result shows that the implemented efficiency measures led to an increment of 37.5% in annual energy savings and 26.1% in the annual water savings. Results shows that the application of the proposed framework supports evaluating energy and water efficiency measures to implement it on the buildings to achieve Mostadam minimum energy and water requirements. Recommendations were made for future work to bridge the knowledge gap.
ContributorsMohamed, Sara Murad (Author) / Sullivan, Kenneth (Thesis advisor) / Chong, Oswald (Committee member) / Hurtado, Kristen (Committee member) / Arizona State University (Publisher)
Created2022
157809-Thumbnail Image.png
Description
The intent of this study was to identify the most viable among a proposive sample of emerging sustainable construction technologies with respect to the Twin Cities Metropolitan Geographic Area. With space heating and space cooling accounting for such a significant portion of energy consumption in Twin Cities homes, a representative

The intent of this study was to identify the most viable among a proposive sample of emerging sustainable construction technologies with respect to the Twin Cities Metropolitan Geographic Area. With space heating and space cooling accounting for such a significant portion of energy consumption in Twin Cities homes, a representative sample of homes was analyzed for annual heating and cooling loads. For each home a series of heating, ventilation, air conditioning (HVAC) and envelope equipment was modeled in order to provide data for various sustainable home construction technologies. The result was a specific amount of energy savings from baseline construction methods for each sustainable technology. The study found that integrated geothermal heat pump and radiant conditioning systems have a far greater impact on energy savings than the construction methods evaluated. Nevertheless, insulated concrete forms provided the greatest energy savings within the proposive set of construction methods. The greatest amount of space conditioning energy savings of all configurations tested was 73.48% using an integrated geothermal heat pump and radiant conditioning system, structural insulated panel wall construction, aerosol air infiltration prevention, and insulated concrete form basement construction. The results of the study were used to determine areas for further research and to provide awareness within the Twin Cities construction enterprise to determine the most viable technologies that contractors, municipalities, and citizens should prioritize moving forward.
ContributorsMcKilligan, Ryan (Author) / Sullivan, Kenneth (Thesis advisor) / Stone, Brian (Committee member) / Smithwick, Jake (Committee member) / Arizona State University (Publisher)
Created2019