Matching Items (22)
Filtering by

Clear all filters

136830-Thumbnail Image.png
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
134712-Thumbnail Image.png
Description
Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to

Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to the soil to increase plant productivity. The objective of this experiment was to test how different concentrations of roasted coffee grounds would affect the overall plant productivity when introduced in the soil of various plant types and environmental atmospheres. Three treatments were selected (100% potting mix, 50% potting mix/50% coffee grounds, and 25% potting mix/75% coffee grounds) and applied to 3 acid-tolerating plants (radish, basil, and parsley). Each of these treatments were grown in 2 different environments, where one was planted in a Tempe, AZ backyard while the other group was planted in a lab environment, locating at Arizona State University's Tempe Campus. Each plant with its respective treatments (plant type, coffee ground treatment, and environment) had 10 identical plants for statistical accuracy, resulting in a total of 180 plants grown, observed, and analyzed for this 3-month long experiment. The plant development, plant height, length of roots, quantity of leaves, and environmental observations were recorded and used to define plant productivity in this investigation. The experiment demonstrated low survival rates in all groups including the control group, suggesting a flaw in the experimental design. Nonetheless, the experiment showed that among the surviving plants, the 75% treatment had the largest negative impact on plant productivity. The measured root lengths and leaf quantity had various results across each plant group, leaving the hypothesis unverified. Overall, the experiment was effective in demonstrating negative impacts of great concentrations of coffee grounds when introduced to various plants, but further investigation with an adjusted experimental design will need to be completed to reach a reliable conclusion.
ContributorsVan Winkle, Delaney Dare (Author) / Bang, Christofer (Thesis director) / Fox, Peter (Committee member) / Earl, Stevan (Committee member) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134553-Thumbnail Image.png
Description
The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a

The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a strong focal point is needed to concentrate incident solar irradiation on the small, high efficiency cells. The objective of this study was to evaluate and quantify tracking accuracy for a performance model which would apply to similar two-axis systems. An analysis comparing CPV to traditional solar photovoltaics from an economic standpoint was conducted as well to evaluate the viability of emerging CPV technology. The research was performed using two calibrated solar radiation sensors mounted on the plane of the tracking system, normal to the sun. One sensor is held at a constant, normal angle (0 degrees) and the other is varied by a known interior angle in the range of 0 degrees to 10 degrees. This was to study the magnitude of the decrease in in irradiance as the angle deviation increases. The results show that, as the interior angle increases, the solar irradiance and thus available power available on the focal point will decrease roughly at a parabolic rate, with a sharp cutoff point at angles greater than 5 degrees. These findings have a significant impact on CPV system tracking mechanisms, which require high precision tracking in order to perform as intended.
ContributorsPodzemny, Dominic James (Author) / Reddy, Agami (Thesis director) / Kelman, Jonathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Due to recent changes in climate, hurricanes have become more violent and destructive in the tropical region of the Caribbean. Extreme weather events have destroyed freshwater sources in many islands, affecting the overall food and water security of the region. More resilient forms of collecting freshwater for citizens and agriculture

Due to recent changes in climate, hurricanes have become more violent and destructive in the tropical region of the Caribbean. Extreme weather events have destroyed freshwater sources in many islands, affecting the overall food and water security of the region. More resilient forms of collecting freshwater for citizens and agriculture must be proposed in order to mitigate future weather impacts and increase future water security. Rainwater harvesting is an ideal and sustainable source of freshwater that can be adapted into existing households to help ease reliance on city water sources. Rainwater harvesting systems are effective sources of supplemental freshwater because they are easy to incorporate and inexpensive compared to other sources of freshwater. Dennis McClung, founder and owner of global charity, Garden Pool, has created the Climate Smart Farm, an agriculture system that incorporates rainwater harvesting to help create a more climate resilient farm. The Climate Smart Farm is adaptable and can be customized to incorporate solar energy, vertical gardening, aquaponics, hydroponics, plant propagation techniques, and more to grow crops in a more sustainable fashion. The system has recently been installed in the island of Barbuda, which was badly affected by the hurricanes in the summer of 2017. The system has been positively accepted by the country due to its ability to make agriculture simple and sustainable. It can be built with local materials, making the building process economy friendly. And with the addition of plant propagation techniques, the Climate Smart Farm can extend growing seasons and increase overall yields.
ContributorsLeung, Karyn Mae (Author) / Eakin, Hallie (Thesis director) / McClung, Dennis (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133782-Thumbnail Image.png
Description
As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in

As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in the development of water sustainability programs by performing experiments that convert urine into reusable water. The goal is to make reusable water processes become inexpensive and easily accessible to local businesses. This promises a significant environmental impact. In order to make the process of development more efficient we can combine engineering technology with scientific experimentation. As an engineering student and an advocate of water sustainability, I have a chance to design the front-end platform that will use IoT to make the experimental process more accessible and effective. In this paper, I will document the entire process involved in the designing process and what I have learned.
ContributorsTran, Phung Thien (Author) / Boscovic, Dragan (Thesis director) / Boyer, Treavor (Committee member) / School of Earth and Space Exploration (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132998-Thumbnail Image.png
Description
The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed

The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed nations. A significant portion of the energy consumed for heating and cooling, where a majority is dissipated to the ambient as waste heat. This research answers how much power output (µW·cm-2) can the thermogalvanic brick experimentally produce from an induced temperature gradient? While there are multiple avenues for the initial and optimized prototype design, one key area of interest relating to thermogalvanic devices is the effective surface area of the electrodes. This report highlights the experimental power output measurements of a Cu/Cu2+ thermogalvanic brick by manipulating the effective surface area of the electrodes. Across three meshes, the maximum power output normalized for temperature was found to be between 2.13-2.87 x 10-3 μWcm-2K-2. The highest normalized power output corresponded to the mesh with the highest effective surface area, which was classified as the fine mesh. This intuitively aligned with the theoretical understanding of surface area and maximum power output, where decreasing the activation resistance also reduces the internal resistance, which increases the theoretical maximum power.
ContributorsKiracofe, Ryan Moore (Author) / Phelan, Patrick (Thesis director) / El Asmar, Mounir (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137706-Thumbnail Image.png
Description
Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions.

Despite similar climate, ecosystem, and population size, the cities of Hermosillo, Mexico and Mesa, USA manage their water very differently. Mesa has a stable and resilient system organized around state and federal regulations. Hermosillo, after rapidly industrializing, has not been able to cope with climate change and long-term drought conditions. Water distribution statistics, stakeholders, policy structure, and government organization were combined in an organizational framework to compare the practices of the two cities. These inputs were weighed against the outcomes and the sustainability of each system. While Mesa is part of a massive metropolitan area, Hermosillo is still developing into a metropolitan center and does not have access to the same infrastructure and resources. In Hermosillo local needs are frequently discounted in favor of broad political goals.
ContributorsMoe, Rud Lamb (Author) / Chhetri, Netra (Thesis director) / White, Dave (Committee member) / Robles-Morua, Agustin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2013-05
148491-Thumbnail Image.png
Description

Over the last few decades, sustainability has become a great focus for individuals as well as businesses globally. The focus of this study was to understand why businesses purchase certain office supplies and why they may not be choosing to purchase the most sustainable options. The research question asked, “why

Over the last few decades, sustainability has become a great focus for individuals as well as businesses globally. The focus of this study was to understand why businesses purchase certain office supplies and why they may not be choosing to purchase the most sustainable options. The research question asked, “why are certain businesses reluctant to make positive, sustainable changes to their usage of office materials in their workplace environments?” Most companies do not look for alternatives that would benefit the environment when purchasing products for their office space. The reasons behind this hesitancy to change was studied through current literature on the topic as well as interviews conducted with Office Managers of several different businesses. Comparisons were made between each businesses’ decision patterns in order to find the root cause or causes of why companies do not choose more sustainable options when purchasing products for their workspaces. The interviews revealed that cost and quality are the most important factors these businesses take into consideration when purchasing office supplies. While some companies have looked into alternative products for their supplies, they ultimately choose to still purchase the less sustainable option. This is because the less sustainable option is often cheaper, and the company knows what quality to expect for the item. Overall, all of the Office Managers who were interviewed acknowledged some sort of sustainable practice that their company was taking part in, even if it did not directly relate to the types of office supplies that they purchase. This inclusion of general sustainable practices demonstrates how businesses are making efforts one way or another towards a more sustainable future. Therefore, this awareness to sustainability suggests that most, if not all businesses will eventually end up purchasing sustainable alternatives for their office supplies. However, the timeframe for which this occurs for each company will likely vary.

ContributorsOberlander, Rachel Lynn (Author) / Kappes, Janelle (Thesis director) / Augustin-Behravesh, Shirley-Ann (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.

ContributorsRote, Jennifer Ashley (Co-author) / Goodall, Melody (Co-author) / Lozano Porras, Mariela (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05