Matching Items (23)
Filtering by

Clear all filters

151830-Thumbnail Image.png
Description
The lack of substantive, multi-dimensional perspectives on civic space planning and design has undermined the potential role of these valuable social and ecological amenities in advancing urban sustainability goals. Responding to these deficiencies, this dissertation utilized mixed quantitative and qualitative methods and synthesized multiple social and natural science perspectives to

The lack of substantive, multi-dimensional perspectives on civic space planning and design has undermined the potential role of these valuable social and ecological amenities in advancing urban sustainability goals. Responding to these deficiencies, this dissertation utilized mixed quantitative and qualitative methods and synthesized multiple social and natural science perspectives to inform the development of progressive civic space planning and design, theory, and public policy aimed at improving the social, economic, and environmental health of cities. Using Phoenix, Arizona as a case study, the analysis was tailored to arid cities, yet the products and findings are flexible enough to be geographically customized to the social, environmental, built, and public policy goals of other urbanized regions. Organized into three articles, the first paper applies geospatial and statistical methods to analyze and classify urban parks in Phoenix based on multiple social, ecological, and built criteria, including landuse-land cover, `greenness,' and site amenities, as well as the socio- economic and built characteristics of park neighborhoods. The second article uses spatial empirical analysis to rezone the City of Phoenix following transect form-based code. The current park system was then assessed within this framework and recommendations are presented to inform the planning and design of civic spaces sensitive to their social and built context. The final paper culminates in the development of a planning tool and site design guidelines for civic space planning and design across the urban-to-natural gradient augmented with multiple ecosystem service considerations and tailored to desert cities.
ContributorsIbes, Dorothy (Author) / Talen, Emily (Thesis advisor) / Boone, Christopher (Committee member) / Crewe, Katherine (Committee member) / Arizona State University (Publisher)
Created2013
151996-Thumbnail Image.png
Description
Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively,

Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively, transmitted throughout the state of Arizona. In an effort to gain a more complete understanding of the transmission dynamics of West Nile virus this thesis examines human, vector, and environment interactions as they exist within Maricopa County. Through ethnographic and geographic information systems research methods this thesis identifies 1) the individual factors that influence residents' knowledge and behaviors regarding mosquitoes, 2) the individual and regional factors that influence residents' knowledge of mosquito ecology and the spatial distribution of local mosquito populations, and 3) the environmental, demographic, and socioeconomic factors that influence mosquito abundance within Maricopa County. By identifying the factors that influence human-vector and vector-environment interactions, the results of this thesis may influence current and future educational and mosquito control efforts throughout Maricopa County.
ContributorsKunzweiler, Colin (Author) / Boone, Christopher (Thesis advisor) / Wutich, Amber (Committee member) / Brewis-Slade, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013
152299-Thumbnail Image.png
Description
Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health

Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health impacts in urban areas, where large numbers of vulnerable people reside and where local-scale urban heat island effects (UHI) retard and reduce nighttime cooling. This dissertation presents three empirical case studies that were conducted to advance our understanding of human vulnerability to heat in coupled human-natural systems. Using vulnerability theory as a framework, I analyzed how various social and environmental components of a system interact to exacerbate or mitigate heat impacts on human health, with the goal of contributing to the conceptualization of human vulnerability to heat. The studies: 1) compared the relationship between temperature and health outcomes in Chicago and Phoenix; 2) compared a map derived from a theoretical generic index of vulnerability to heat with a map derived from actual heat-related hospitalizations in Phoenix; and 3) used geospatial information on health data at two areal units to identify the hot spots for two heat health outcomes in Phoenix. The results show a 10-degree Celsius difference in the threshold temperatures at which heat-stress calls in Phoenix and Chicago are likely to increase drastically, and that Chicago is likely to be more sensitive to climate change than Phoenix. I also found that heat-vulnerability indices are sensitive to scale, measurement, and context, and that cities will need to incorporate place-based factors to increase the usefulness of vulnerability indices and mapping to decision making. Finally, I found that identification of geographical hot-spot of heat-related illness depends on the type of data used, scale of measurement, and normalization procedures. I recommend using multiple datasets and different approaches to spatial analysis to overcome this limitation and help decision makers develop effective intervention strategies.
ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Thesis advisor) / Boone, Christopher (Committee member) / Guhathakurta, Subhrajit (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2013
152930-Thumbnail Image.png
Description
Diarrheal diseases caused by poor water, sanitation and hygiene continue to kill more children in Sub-Saharan Africa's burgeoning informal urban settlements than in any other part of the world. In recent years, Delegated Management Model (DMM), a partnership in which a utility delegates service management to slum residents have been

Diarrheal diseases caused by poor water, sanitation and hygiene continue to kill more children in Sub-Saharan Africa's burgeoning informal urban settlements than in any other part of the world. In recent years, Delegated Management Model (DMM), a partnership in which a utility delegates service management to slum residents have been promoted as new models to improve services.

This dissertation examines the benefits of DMM by comparing water services in three informal settlements in Kisumu city, Kenya: two slums where DMM has been implemented, and one, a control, where it has not. In addition, the research examined how school-based hygiene interventions could be designed to improve safe water and hygiene knowledge in urban informal settlements. This study compared outcomes of two approaches to hygiene education, one which combined messages with participatory water testing; the second used hygiene messages alone.

Results of the DMM study showed that DMM implementation had lowered water cost and improved provider accountability. However, unhygienic water collection and handling practices on the part of the service users could contaminate drinking water that was clean at the delivery point, thus preventing the intended health outcomes of DMM from being realized. Results of the hygiene education intervention showed that one week after the inventions, hygiene knowledge among students who received the intervention that combined hygiene messages with participatory water testing was significantly improved. Evaluation of the intervention 12 months after implementation showed that the hygiene knowledge gained was sustained.

The research findings suggest that: i) regular monitoring of water quality at the kiosks is essential to ensure that the DMM model achieves intended health outcomes, ii) sanitation conditions at kiosk sites need to be regulated to meet minimum hygiene standards, and iii) customers need to be educated on safe water collection and storage practices. Finally, school-based hygiene education could be made more effective by including hands-on water testing by students. Making sustainable impact on health and wellbeing of slum residents requires not only building effective partnerships for water delivery, but also paying close attention to the other points of intervention within the water system.
ContributorsNzengya, Daniel (Author) / Aggarwal, Rimjhim (Thesis advisor) / Hartwell, Leland (Committee member) / Boone, Christopher (Committee member) / Arizona State University (Publisher)
Created2014
150989-Thumbnail Image.png
Description
Education for sustainable development (ESD) is an academic goal for many courses in higher learning. ESD encompasses a specific range of learning outcomes, competencies, skills and literacies that include and exceed the acquisition of content knowledge. Methods and case studies for measuring learning outcomes in ESD is absent from the

Education for sustainable development (ESD) is an academic goal for many courses in higher learning. ESD encompasses a specific range of learning outcomes, competencies, skills and literacies that include and exceed the acquisition of content knowledge. Methods and case studies for measuring learning outcomes in ESD is absent from the literature. This case study of an undergraduate course in urban sustainability examines the processes, curriculum, pedagogies, and methods to explore whether or not learning outcomes in education for sustainable development are being reached. Observations of the course, and the statistical analysis of student surveys from course evaluations, are explored to help identify the relationships between learning outcomes in ESD and the processes of learning and teaching in the case study. Recommendations are made for applying the lessons of the case study to other courses, and for continuing further research in this area.
ContributorsFrederick, Chad Paul (Author) / Pijawka, David (Thesis advisor) / Boone, Christopher (Committee member) / Crewe, Katherine (Committee member) / Arizona State University (Publisher)
Created2012
153951-Thumbnail Image.png
Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.

Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.

This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.

The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.

The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.

Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.

With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015
154130-Thumbnail Image.png
Description
Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed

Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of LEED certified buildings.

This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.

From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015
156208-Thumbnail Image.png
Description
In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or

In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or heating technologies to meet this need. The concept of thermal energy storage (TES), as noted by many authors, is a promising way to rectify indoor temperature fluctuations. Due to its high energy density and the use of latent energy, Phase Change Materials (PCMs) are an efficient choice to use as TES. A question that has not satisfactorily been addressed, however, is the optimum location of PCM. In other words, given a constant PCM mass, where is the best location for it in a building? This thesis addresses this question by positioning PCM to obtain maximum energy savings and peak time delay. This study is divided into three parts. The first part is to understand the thermal behavior of building surfaces, using EnergyPlus software. For analysis, a commercial prototype building model for a small office in Phoenix, provided by the U.S. Department of Energy, is applied and the weather location file for Phoenix, Arizona is also used. The second part is to justify the best location, which is obtained from EnergyPlus, using a transient grey box building model. For that we have developed a Resistance-Capacitance (RC) thermal network and studied the thermal profile of a building in Phoenix. The final part is to find the best location for PCMs in buildings using EnergyPlus software. In this part, the mass of PCM used in each location remains unchanged. This part also includes the impact of the PCM mass on the optimized location and how the peak shift varies. From the analysis, it is observed that the ceiling is the best location to install PCM for yielding the maximum reduction in HVAC energy consumption for a hot, arid climate like Phoenix.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Phelan, Patrick (Thesis advisor) / Wang, Robert (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
156235-Thumbnail Image.png
Description
High performing and sustainable building certification bodies continue to update their requirements, leading to scope modification of certifications, and an increasing number of viable sources of environmental information for building materials. In conjunction, the Architecture, Engineering, and Construction (AEC) industry is seeing increasing demand for such environmental product information. The

High performing and sustainable building certification bodies continue to update their requirements, leading to scope modification of certifications, and an increasing number of viable sources of environmental information for building materials. In conjunction, the Architecture, Engineering, and Construction (AEC) industry is seeing increasing demand for such environmental product information. The industry and certifications are moving from using single attribute environmental information about building materials to lifecycle based information to inform their design decisions.

This dissertation seeks to understand the current practices, and then focus on strategies to effectively utilize newer sources of environmental product information in high performance building design. The first phase of research used a survey of 119 U.S.-based AEC practitioners experienced in certified sustainable building projects to understand how the numerous sources of environmental information are currently used in the building design process. The second phase asked two focus groups of experienced AEC professionals to develop a Message Sequence Chart (MSC) that documents the conceptual design process for a recently designed building. Then, the focus group participants integrated a new sustainability requirement for building materials, Environmental Product Declarations (EPDs), into their project, and documented the adjustments to their specific design process in a second, modified MSC highlighting potential drivers for inclusion of EPDs. Finally, the author examines the broader applicability of these drivers through case studies. Specifically, 19 certified high-performance building (HPB) case studies, for reviewing the impact of three different potential drivers on the design team’s approach to considering environmental product information during conceptual design of a HPB, as well as the projects certification level.

LEED certification has changed the design of buildings, and the new information sources for building materials will inform the way the industry selects building materials. Meanwhile, these information sources will need to expand to include a growing number of products, and potentially more data as the industry’s understanding of the impacts of building materials develops. This research expands upon previous research on LEED certification to illustrates that owner engagement and commitment to the HPB process is a critical success factor for the use of environmental product information about building materials.
ContributorsBurke, Rebekah (Author) / Parrish, Kristen (Thesis advisor) / Gibson, G. Edward (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2018
156680-Thumbnail Image.png
Description
One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated,

One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated, and managed such that its environmental impacts and costs are minimal (energy efficient design and operation), and also be designed and configured in a way that it is resilient in confronting disruptions posed by natural, manmade, or random events. In this regard, development of quantitative sustainability metrics in support of decision-making relevant to design, future growth planning, and day-to-day operation of such systems would be of great value. In this study, a pragmatic performance-based sustainability assessment framework and quantitative indices are developed towards this end whereby sustainability goals and concepts can be translated and integrated into engineering practices.

New quantitative sustainability indices are proposed to capture the energy system environmental impacts, economic performance, and resilience attributes, characterized by normalized environmental/health externalities, energy costs, and penalty costs respectively. A comprehensive Life Cycle Assessment is proposed which includes externalities due to emissions from different supply and demand-side energy systems specific to the regional power generation energy portfolio mix. An approach based on external costs, i.e. the monetized health and environmental impacts, was used to quantify adverse consequences associated with different energy system components.

Further, this thesis also proposes a new performance-based method for characterizing and assessing resilience of multi-functional demand-side engineered systems. Through modeling of system response to potential internal and external failures during different operational temporal periods reflective of diurnal variation in loads and services, the proposed methodology quantifies resilience of the system based on imposed penalty costs to the system stakeholders due to undelivered or interrupted services and/or non-optimal system performance.

A conceptual diagram called “Sustainability Compass” is also proposed which facilitates communicating the assessment results and allow better decision-analysis through illustration of different system attributes and trade-offs between different alternatives. The proposed methodologies have been illustrated using end-use monitored data for whole year operation of a university campus energy system.
ContributorsMoslehi, Salim (Author) / Reddy, T. Agami (Thesis advisor) / Lackner, Klaus S (Committee member) / Parrish, Kristen (Committee member) / Pendyala, Ram M. (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2018