Matching Items (6)
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152852-Thumbnail Image.png
Description
The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require the coupling of behavioral forecasting with environmental assessment. Using new

The environmental and economic assessment of neighborhood-scale transit-oriented urban form changes should include initial construction impacts through long-term use to fully understand the benefits and costs of smart growth policies. The long-term impacts of moving people closer to transit require the coupling of behavioral forecasting with environmental assessment. Using new light rail and bus rapid transit in Los Angeles, California as a case study, a life-cycle environmental and economic assessment is developed to assess the potential range of impacts resulting from mixed-use infill development. An integrated transportation and land use life-cycle assessment framework is developed to estimate energy consumption, air emissions, and economic (public, developer, and user) costs. Residential and commercial buildings, automobile travel, and transit operation changes are included and a 60-year forecast is developed that compares transit-oriented growth against growth in areas without close access to high-capacity transit service. The results show that commercial developments create the greatest potential for impact reductions followed by residential commute shifts to transit, both of which may be effected by access to high-capacity transit, reduced parking requirements, and developer incentives. Greenhouse gas emission reductions up to 470 Gg CO2-equivalents per year can be achieved with potential costs savings for TOD users. The potential for respiratory impacts (PM10-equivalents) and smog formation can be reduced by 28-35%. The shift from business-as-usual growth to transit-oriented development can decrease user costs by $3,100 per household per year over the building lifetime, despite higher rental costs within the mixed-use development.
ContributorsNahlik, Matthew (Author) / Chester, Mikhail V (Thesis advisor) / Pendyala, Ram (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2014
153286-Thumbnail Image.png
Description
The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and particulate organic material is poorly understood despite the importance for

The atmosphere contains a substantial amount of water soluble organic material, yet despite years of efforts, little is known on the structure, composition and properties of this organic matter. Aqueous phase processing by fogs and clouds of the gas and particulate organic material is poorly understood despite the importance for air pollution and climate. On one hand, gas phase species can be processed by fog/cloud droplets to form lower volatility species, which upon droplet evaporation lead to new aerosol mass, while on the other hand larger nonvolatile material can be degraded by in cloud oxidation to smaller molecular weight compounds and eventually CO2.

In this work High Performance Size Exclusion Chromatography coupled with inline organic carbon detection (SEC-DOC), Diffusion-Ordered Nuclear Magnetic Resonance spectroscopy (DOSY-NMR) and Fluorescence Excitation-Emission Matrices (EEM) were used to characterize molecular weight distribution, functionality and optical properties of atmospheric organic matter. Fogs, aerosols and clouds were studied in a variety of environments including Central Valley of California (Fresno, Davis), Pennsylvania (Selinsgrove), British Columbia (Whistler) and three locations in Norway. The molecular weight distributions using SEC-DOC showed smaller molecular sizes for atmospheric organic matter compared to surface waters and a smaller material in fogs and clouds compared to aerosol particles, which is consistent with a substantial fraction of small volatile gases that partition into the aqueous phase. Both, cloud and aerosol samples presented a significant fraction (up to 21% of DOC) of biogenic nanoscale material. The results obtained by SEC-DOC were consistent with DOSY-NMR observations.

Cloud processing of organic matter has also been investigated by combining field observations (sample time series) with laboratory experiments under controlled conditions. Observations revealed no significant effect of aqueous phase chemistry on molecular weight distributions overall although during cloud events, substantial differences were apparent between organic material activated into clouds compared to interstitial material. Optical properties on the other hand showed significant changes including photobleaching and an increased humidification of atmospheric material by photochemical aging. Overall any changes to atmospheric organic matter during cloud processing were small in terms of bulk carbon properties, consistent with recent reports suggesting fogs and clouds are too dilute to substantially impact composition.
ContributorsWang, Youliang (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2014
153636-Thumbnail Image.png
Description
Particulate trace metals can enter the atmosphere as mineral dust, sea spray, anthropogenic emissions, biomass burning, etc. Once in the atmosphere they can undergo a variety of transformations including aqueous phase (cloud) processing, photochemical reactions, interact with gases, and ultimately deposit. Metals in aerosols are of particular interest because

Particulate trace metals can enter the atmosphere as mineral dust, sea spray, anthropogenic emissions, biomass burning, etc. Once in the atmosphere they can undergo a variety of transformations including aqueous phase (cloud) processing, photochemical reactions, interact with gases, and ultimately deposit. Metals in aerosols are of particular interest because of their natural and anthropogenic sources as well as their effects on local (human health) and global (climate change) scales. This work investigates the metal component of atmospheric particles and how it changes during physical and chemical processes at local, regional and global scales, through laboratory and field studies. In the first part of this work, the impact of local dust storms (haboobs) on ambient metal concentrations and speciation is investigated in Tempe, AZ. It was found that metal concentrations substantially increase (> 10 times) during these events before returning to pre-storm levels. In a second part of this work, the impact of fog processing on metal concentrations, solubility and speciation is examined through field observations in California’s Central Valley. The observations show that fog processing has a profound effect on local metal concentrations but the trends are not consistent between sites or even between events, indicating complex processes that need further investigation. For example, fogs have an effect on scavenging and solubility of iron in Davis, while in Fresno soluble iron content is indicative of the source of the aerosol. The last part of the thesis investigates the role of particle size on the solubilization of iron from mineral dust aerosols during global atmospheric transport through laboratory experiments. The experiments showed that mineralogy and pH have the greatest effect on iron solubility in atmospheric aerosols in general while particle size and photochemistry impact mainly the solubility of iron oxides.
ContributorsMarcotte, Aurelie Rose (Author) / Herckes, Pierre (Thesis advisor) / Anbar, Ariel (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2015
154722-Thumbnail Image.png
Description
This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s

This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s historical load data. Sustainability, greenhouse gas emissions, carbon neutrality, and photovoltaic (PV) penetration are all considered along with potential economic impacts.

By extrapolating the air-conditioning load profile from the existing data sets, it can be ensured that cooling demands can be met at all times under the new management method. Using this cooling demand data, it is possible to determine how much energy is required to meet these needs. Then, modeling the PV arrays, the thermal energy storage (TES), and the chillers, the maximum PV penetration in the future state can be determined.

Using this approach, it has been determined that ASU can increase their solar PV resources by a factor of 3.460, which would amount to a PV penetration of approximately 48%.
ContributorsRouthier, Alexander F (Author) / Honsberg, Christiana (Thesis advisor) / Fraser, Matthew (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
137742-Thumbnail Image.png
Description
Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking tool to determine potential locations for solar and wind power plants in Arizona. Criteria include renewable input (irradiance/wind class), topographic

Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking tool to determine potential locations for solar and wind power plants in Arizona. Criteria include renewable input (irradiance/wind class), topographic slope, and distance from transmission lines. These are ranked and summed to determine areas with the most potential. The resulting outputs show that there is much more potential land for solar development than wind development. Further analysis in this paper will focus solely on solar due to wind's lower potential. Land sensitivity and ownership are used to assess the feasibility of development. There are many groupings of highly ranked land across the state, but the largest stretch of land runs from outside of Marana (south-central Arizona) northwest to about 60 miles west of Wickenburg (central-west). This regions is mainly on BLM, state, and privately owned land. Some of this land is considered sensitive, but non-sensitive areas with high potential are frequent throughout. Renewable potential in other states could be determined using this tool as well. Variables could be weighted or added depending on each area's need.
ContributorsZeck, Kevin Michael (Author) / Fraser, Matthew (Thesis director) / Pasqualetti, Martin (Committee member) / Cowger, Lane (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2013-05