Matching Items (2)
Filtering by

Clear all filters

168492-Thumbnail Image.png
Description
There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary

There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary or secondary microplastics; primary microplastics are pre-manufactured micro-sized particles, such as microbeads used in cosmetics, while secondary microplastics form from the degradation of larger plastic objects, such water bottles. Once in the ocean, plastics are readily colonized by a consortium of prokaryotic and eukaryotic organisms, which form dense biofilms on the plastic; this biofilm is termed the “plastisphere”. Despite growing concerns about the ecological impact of microplastics and their respective plastispheres on the marine environment, there is little consensus about the factors that shape the plastisphere on environmentally relevant secondary microplastics. The goal of my dissertation is to comprehensively analyze the role of plastic polymer type, incubation time, and geographic location on shaping plastisphere communities attached to secondary microplastics. I investigated the plastisphere of six chemically distinct plastic polymer types obtained from common household consumer products that were incubated in the coastal Caribbean (Bocas del Toro, Panama) and coastal Pacific (San Diego, CA) oceans. Genotyping using 16S and 18S rRNA gene amplification and next-generation Illumina sequencing was employed to identify bacterial and eukaryotic communities on the polymer surfaces. Statistical analyses show that there were no polymer-specific assemblages for prokaryotes or eukaryotes, but rather a microbial core community that was shared among plastic types. I also found that rare hydrocarbon degrading bacteria may be specific to certain chemical properties of the microplastics. Statistical comparisons of the communities across both sites showed that prokaryotic plastispheres were shaped primarily by incubation time and geographic location. Finally, I assessed the impact of biofilms on microplastic degradation and deposition and conclude that biofilms enhance microplastic sinking of negatively buoyant particles and reduce microplastic degradation. The results of my dissertation increases understanding of the factors that shape the plastisphere and how these communities ultimately determine the fate of microplastics in the marine environment.
ContributorsDudek, Kassandra Lynn (Author) / Neuer, Susanne (Thesis advisor) / Polidoro, Beth (Committee member) / Garcia-Pichel, Ferran (Committee member) / Cao, Huansheng (Committee member) / Arizona State University (Publisher)
Created2021
161867-Thumbnail Image.png
Description
Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial

Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial community, a “cyanosphere”, that is characterized by a high abundance of diazotrophic heterotrophs. This suggests mutualistic relationships wherein nutrients are traded between phototrophs and heterotrophs. To explore these relationships, I performed targeted, pedigreed isolation of cyanosphere members and used co-cultivation to recreate the mutualism in culture. Results showed that, in the absence of fixed nitrogen, M. vaginatus grew well when co-cultured with cyanosphere diazotrophs, but only poorly or not at all when alone or with non-cyanosphere diazotrophs. In agreement with this, the experimental provision of nitrogen to natural populations resulted in a loss of diazotrophs from the cyanosphere compared to controls, but the addition of phosphorus did not. Additionally, the convergence of M. vaginatus trichomes into large bundles held by a common sheath was elicited in culture by the addition of cyanosphere diazotrophs, pointing to a role of cyanobacterial motility responses in the development of mutualistic interactions. I then demonstrated that the tendency of M. vaginatus to stay within bundles and close to the sheath-dwelling cyanosphere was dependent on the cyanosphere population size. This effect was likely mediated by glutamate that acted as a signaling molecule rather than as a N source and impacted the gliding speed and negative chemophobic responses on the cyanobacterium. Glutamate seems to be used as a cue to spatially optimize cyanobacterium-cyanosphere mutualistic exchanges. My findings have potential practical applications in restoration ecology, which I further pursued experimentally. Co-inoculation of soil with cyanosphere diazotrophs resulted in swifter development of biocrusts over inoculation with the cyanobacterium only. Further, their addition to disturbed native soils containing traces of cyanobacteria sufficed for the formation of cohesive biocrusts without cyanobacterial inoculation. The inclusion of such “biocrust probiotics” in biocrust restoration is recommended. Overall, this body of work elucidates the hitherto unknown role of beneficial heterotrophic bacteria in the initial formation and development of biocrusts.
ContributorsNelson, Corey (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Penton, C. Ryan (Committee member) / Gile, Gillian (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2021