Matching Items (2)
Filtering by

Clear all filters

161230-Thumbnail Image.png
Description
Vinegar is gaining popularity as a natural and proven treatment for common diseases and conditions ranging from high blood pressure to diabetes. While the evidence to support the benefits of vinegar is growing, few studies have considered possible negative consequences. One concern relates to the effect of vinegar

Vinegar is gaining popularity as a natural and proven treatment for common diseases and conditions ranging from high blood pressure to diabetes. While the evidence to support the benefits of vinegar is growing, few studies have considered possible negative consequences. One concern relates to the effect of vinegar on saliva pH and dental erosion. The aim of this study is to explore this relationship as well as unsubstantiated claims that vinegar, although acidic, has an alkalizing effect on the overall body, specifically looking at its effect on resting saliva pH. Healthy adults aged 18-45 were recruited for this trial. Twenty-two participants completed this eight-week, parallel-arm, randomized, double blinded study that looked at the effect that regular consumption of red wine vinegar (two tablespoons taken two times per day before a meal) had on resting salivary pH and dental erosion compared to a control (low dosage vinegar pill taken two times a day before a meal). Resting saliva pH was measured at home using the pH20H application and pH strips at week 0 and 8 of the trial. Erosion was noted using the Basic Erosive Wear Examination (BEWE) by a registered dental hygienist at week 1 and 8 of trial. Results indicate no mean difference in resting salivary pH in either treatment group after eight weeks (p value, 0.49). However, there was a statistical significant mean difference in dental erosion between the VIN and CON group (p value, 0.05). Statistical significance in dental erosion, typically a gradual process, in just eight weeks is a significant finding and warrants concern about long time use of vinegar and dental health. Further exploration into this relationship is needed.
ContributorsAnderson, Summer Lynn (Author) / Johnston, Carol (Thesis advisor) / Whisner, Corrie (Committee member) / Alexon, Christy (Committee member) / Arizona State University (Publisher)
Created2019
168610-Thumbnail Image.png
Description
Diabetes is the 7th leading cause of death globally. In 2018, 34.2 million Americans had type 2 diabetes. Many symptoms of diabetes are similar to those of scurvy or vitamin C deficiency. Vitamin C marginality and inadequacy are more prevalent in Type 2 Diabetes/prediabetes than with normal glucose tolerance. Intracellular

Diabetes is the 7th leading cause of death globally. In 2018, 34.2 million Americans had type 2 diabetes. Many symptoms of diabetes are similar to those of scurvy or vitamin C deficiency. Vitamin C marginality and inadequacy are more prevalent in Type 2 Diabetes/prediabetes than with normal glucose tolerance. Intracellular vitamin C inadequacy is suspected due to competition between dehydroascorbic acid and glucose at GLUT 1 and 3 cellular receptors. Erythrocyte osmotic fragility is noted in Gulo -/- knockout mice unable to synthesize endogenous vitamin C. The ascorbate deficient red blood cells presented with low cytoskeletal B-spectrin, spherocyte appearance, and impaired deformability. This cross-sectional study investigated the relationships between diabetes status, erythrocyte osmotic fragility, and serum vitamin C status. Participants were aged 18-65, non-smoking, reported no unresolved health complications, and denied prior vitamin C supplementation. Those with T2D indicated diagnosis of >1 year. All participants provided written informed consent and the study was approved by the local Institutional Review Board in January 2021. Participants provided one fasted blood sample. Erythrocyte osmotic fragility was measured via UV/Vis spectrophotometry with various concentrations of sodium chloride (0.85% - 0.10%) to induce osmotic stress. In addition, plasma was extracted and mixed 1:1 with 10% (w/v) metaphosphoric acid in 2 mmol/L disodium EDTA and centrifuged. The supernatant was stored at -80°C until analysis with isocratic reverse-phase UV-HPLC separation. Participant characteristics did not differ significantly between groups apart from age (p< 0.01) and HbA1c (p=0.002). Data are presented for adults with T2D (n=14; 36% female; 55.5±8.2 y; 31.5±9.0 kg/m2; HbA1c: 7.4±1.9%; plasma vitamin C: 36.0±12.2 uM) and without T2D (n=16; 69% female; 38.7±13.5 y; 26.8±6.6 kg/m2; A1c: 5.4±0.3%; plasma vitamin C: 34.8±10.9uM). Erythrocyte osmotic fragility was significantly elevated (+4.4% hemolysis) in adults without T2D at 0.35% saline (p=0.039). Greater VC status (>30 uM) was associated with lower hemolysis at 0.35% NaCl (p=0.031). Erythrocyte osmotic stability was linked to greater vitamin C intake at 0.20% saline in those without T2D (p =0.019). In this pilot study, vitamin C status did not differ significantly by diabetes status. Vitamin C status was directly linked to erythrocyte osmotic stability in adults without T2D.
ContributorsLundy, Ciara Cheyanne (Author) / Johnston, Carol (Thesis advisor) / Sweazea, Karen (Committee member) / Alexon, Christy (Committee member) / Arizona State University (Publisher)
Created2022