Matching Items (16)
Filtering by

Clear all filters

153442-Thumbnail Image.png
Description
It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are

It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are classified into six groups as: 1) local density, 2) diversity of land use, 3) road connectivity, 4) bike route length, 5) green space, 6) job accessibility. Cycling trips in one week for all children, school children, adults and employed-adults are investigated separately. The regression analysis shows that cycling trips is significantly associated with some features of built environment when many socio-demographic factors are taken into account. Street intersections, bike route length tend to increase the use of bicycle. These effects are well-aligned with literature. Moreover, both local and regional job accessibility variables are statistically significant in two adults' models. However, residential density always has a significant negatively effect on cycling trips, which is still need further research to confirm. Also, there is a gap in literature on how green space affects cycling, but the results of this study is still too unclear to make it up. By elasticity analysis, this study concludes that street intersections is the most powerful predictor on cycling trips. From another perspective, the effects of built environment on cycling at workplace (or school) are distinguished from at home. This study implies that a wide range of measures are available for planners to control vehicle travel by improving cycling-level in California.
ContributorsWang, Kailai, M.U.E.P (Author) / Salon, Deborah (Thesis advisor) / Rey, Sergio (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2015
156095-Thumbnail Image.png
Description
Informal public transport is commonplace in the developing world, but the service exists in the United States as well, and is understudied. Often called "dollar vans", New York's commuter vans serve approximately 120,000 people every day (King and Goldwyn, 2014). While this is a tiny fraction of the New York

Informal public transport is commonplace in the developing world, but the service exists in the United States as well, and is understudied. Often called "dollar vans", New York's commuter vans serve approximately 120,000 people every day (King and Goldwyn, 2014). While this is a tiny fraction of the New York transit rider population, it is comparable to the total number of commuters who ride transit in smaller cities such as Minneapolis/St Paul and Phoenix. The first part of this study reports on the use of commuter vans in Eastern Queens based on a combination of surveys and a ridership tally, all conducted in summer 2016. It answers four research questions: How many people ride the vans? Who rides the commuter vans? Why do they ride commuter vans? Do commuter vans complement or compete against formal transit? Commuter van ridership in Eastern Queens was approximately 55,000 with a high percentage of female ridership. Time and cost savings were the main factors influencing commuter van ridership. Possession of a MetroCard was shown to negatively affect the frequency of commuter van ridership. The results show evidence of commuter vans playing both a competing and complementary role to MTA bus and subway transit. The second part of this study presents a SWOT analysis results of commuter vans, and the policy implications. It answers 2 research questions: What are the main strengths, weaknesses, opportunities and threats of commuter vans in Eastern Queens? and How do the current policies, rules and regulations affect commuter van operation? The SWOT analysis results show that the commuter van industry is resilient, performs a necessary service, and, with small adjustments that will help reduce operating costs and loss of profits have a chance of thriving in Eastern Queens and the rest of New York City. The study also discusses the mismatch between policy and practice offering recommendations for improvement to ensure that commuter vans continue to serve residents of New York City.
ContributorsMusili, Catherine (Author) / Salon, Deborah (Thesis advisor) / King, David (Committee member) / Kelley, Jason (Committee member) / Arizona State University (Publisher)
Created2017
156546-Thumbnail Image.png
Description
Bicycle sharing systems (BSS) operate on five continents, and they change quickly with technological innovations. The newest “dockless” systems eliminate both docks and stations, and have become popular in China since their launch in 2016. The rapid increase in dockless system use has exposed its drawbacks. Without the order imposed

Bicycle sharing systems (BSS) operate on five continents, and they change quickly with technological innovations. The newest “dockless” systems eliminate both docks and stations, and have become popular in China since their launch in 2016. The rapid increase in dockless system use has exposed its drawbacks. Without the order imposed by docks and stations, bike parking has become problematic. In the areas of densest use, the central business districts of large cities, dockless systems have resulted in chaotic piling of bikes and need for frequent rebalancing of bikes to other locations. In low-density zones, on the other hand, it may be difficult for customers to find a bike, and bikes may go unused for long periods. Using big data from the Mobike BSS in Beijing, I analyzed the relationship between building density and the efficiency of dockless BSS. Density is negatively correlated with bicycle idle time, and positively correlated with rebalancing. Understanding the effects of density on BSS efficiency can help BSS operators and municipalities improve the operating efficiency of BSS, increase regional cycling volume, and solve the bicycle rebalancing problem in dockless systems. It can also be useful to cities considering what kind of BSS to adopt.
ContributorsCui, Wencong (Author) / Kuby, Michael (Thesis advisor) / Salon, Deborah (Committee member) / Thigpen, Calvin (Committee member) / Arizona State University (Publisher)
Created2018
136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
132859-Thumbnail Image.png
Description
Since 1979, Phoenix has been organized into 15 theoretically self-contained urban villages in order to manage rapid growth. The major objective of the village plan was to decrease demand for personal vehicle use by internalizing travel to the closest village core, or an adjacent village core, instead of expanding

Since 1979, Phoenix has been organized into 15 theoretically self-contained urban villages in order to manage rapid growth. The major objective of the village plan was to decrease demand for personal vehicle use by internalizing travel to the closest village core, or an adjacent village core, instead of expanding travel to one metropolitan core. Phoenix’s transition from a monocentric urban structure to a more polycentric structure has yet to be studied for its efficacy on this goal of turning personal vehicle travel inward. This paper pairs more conventional measures of automobile dependence, such as, use of alternative modes of transportation in place of private vehicle use and commute times, with more nuanced measures of internal travel between work and home, job housing ratio, and job industry breakdowns to describe Phoenix’s reliance on automobiles. Phoenix’s internal travel ratios were higher when compared to adjacent cities and either on-par or lower when compared to non-adjacent cities that were comparable to Phoenix in population density and size.
ContributorsCuiffo, Kathryn Victoria (Author) / King, David (Thesis director) / Salon, Deborah (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Psychology (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
154607-Thumbnail Image.png
Description
Transportation infrastructure in urban areas has significant impacts on socio-economic activities, land use, and real property values. This dissertation proposes a more comprehensive theory of the positive and negative relationships between property values and transportation investments that distinguishes different effects by mode (rail vs. road), by network component (nodes vs.

Transportation infrastructure in urban areas has significant impacts on socio-economic activities, land use, and real property values. This dissertation proposes a more comprehensive theory of the positive and negative relationships between property values and transportation investments that distinguishes different effects by mode (rail vs. road), by network component (nodes vs. links), and by distance from them. It hypothesizes that transportation investment generates improvement in accessibility that accrue only to the nodes such as highway exits and light rail stations. Simultaneously, it tests the hypothesis that both transport nodes and links emanate short-distance negative nuisance effects due to disamenities such as traffic and noise. It also tests the hypothesis that nodes of both modes generate a net effect combining accessibility and disamenities. For highways, the configuration at grade or above/below ground is also tested. In addition, this dissertation hypothesizes that the condition of road pavement may have an impact on residential property values adjacent to the road segments. As pavement condition improves, value of properties adjacent to a road are hypothesized to increase as well. A multiple-distance-bands approach is used to capture distance decay of amenities and disamenities from nodes and links; and pavement condition index (PCI) is used to test the relationship between road condition and residential property values. The hypotheses are tested using spatial hedonic models that are specific to each of residential and commercial property market. Results confirm that proximity to transport nodes are associated positively with both residential and commercial property values. As a function of distance from highway exits and light rail transit (LRT) stations, the distance-band coefficients form a conventional distance decay curve. However, contrary to our hypotheses, no net effect is evident. The accessibility effect for highway exits extends farther than for LRT stations in residential model as expected. The highway configuration effect on residential home values confirms that below-grade highways have relatively positive impacts on nearby houses compared to those at ground level or above. Lastly, results for the relationship between pavement condition and residential home values show that there is no significant effect between them.

Some differences in the effect of infrastructure on property values emerge between residential and commercial markets. In the commercial models, the accessibility effect for highway exits extends less than for LRT stations. Though coefficients for short distances (within 300m) from highways and LRT links were expected to be negative in both residential and commercial models, only commercial models show a significant negative relationship. Different effects by mode, network component, and distance on commercial submarkets (i.e., industrial, office, retail and service properties) are tested as well and the results vary based on types of submarket.

Consequently, findings of three individual paper confirm that transportation investments mostly have significant impacts on real-estate properties either in a positive or negative direction in accordance with the transport mode, network component, and distance, though effects for some conditions (e.g., proximity to links of highway and light rail, and pavement quality) do not significantly change home values. Results can be used for city authorities and planners for funding mechanisms of transport infrastructure or validity of investments as well as private developers for maximizing development profits or for locating developments.
ContributorsSeo, Kihwan (Author) / Michael, Kuby (Thesis advisor) / Golub, Aaron (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2016
155109-Thumbnail Image.png
Description
Bicyclist and pedestrian safety is a growing concern in San Francisco, CA,

especially given the increasing numbers of residents choosing to bike and walk. Sharing

the roads with automobiles, these alternative road users are particularly vulnerable to

sustain serious injuries. With this in mind, it is important to identify the factors that

influence the

Bicyclist and pedestrian safety is a growing concern in San Francisco, CA,

especially given the increasing numbers of residents choosing to bike and walk. Sharing

the roads with automobiles, these alternative road users are particularly vulnerable to

sustain serious injuries. With this in mind, it is important to identify the factors that

influence the severity of bicyclist and pedestrian injuries in automobile collisions. This

study uses traffic collision data gathered from California Highway Patrol’s Statewide

Integrated Traffic Records System (SWITRS) to predict the most important

determinants of injury severity, given that a collision has occurred. Multivariate binomial

logistic regression models were created for both pedestrian and bicyclist collisions, with

bicyclist/pedestrian/driver characteristics and built environment characteristics used as

the independent variables. Results suggest that bicycle infrastructure is not an important

predictor of bicyclist injury severity, but instead bicyclist age, race, sobriety, and speed

played significant roles. Pedestrian injuries were influenced by pedestrian and driver age

and sobriety, crosswalk use, speed limit, and the type of vehicle at fault in the collision.

Understanding these key determinants that lead to severe and fatal injuries can help

local communities implement appropriate safety measures for their most susceptible

road users.
ContributorsMcIntyre, Andrew (Author) / Salon, Deborah (Thesis advisor) / Kuby, Mike (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
Description

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a consistent management culture, and modes reflecting large infrastructure investments to provide an opportunity for robust life cycle assessment of large impact components. An in-depth screening process including consideration of data availability, project age, energy consumption, infrastructure information, access and egress information, and socio-demographic characteristics was used as the second filter. The results of this selection process led to Los Angeles Metro’s Orange and Gold lines.

In this study, the life cycle assessment framework is used to evaluate energy inputs and emissions of greenhouse gases, particulate matter (10 and 2.5 microns), sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. For the Orange line, Gold line, and competing automobile trip, an analysis system boundary that includes vehicle, infrastructure, and energy production components is specified. Life cycle energy use and emissions inventories are developed for each mode considering direct (vehicle operation), ancillary (non-vehicle operation including vehicle maintenance, infrastructure construction, infrastructure operation, etc.), and supply chain processes and services. In addition to greenhouse gas emissions, the inventories are linked to their potential for respiratory impacts and smog formation, and the time it takes to payback in the lifetime of each transit system.

Results show that for energy use and greenhouse gas emissions, the inclusion of life cycle components increases the footprint between 42% and 91% from vehicle propulsion exclusively. Conventional air emissions show much more dramatic increases highlighting the effectiveness of “tailpipe” environmental policy. Within the life cycle, vehicle operation is often small compared to other components. Particulate matter emissions increase between 270% and 5400%. Sulfur dioxide emissions increase by several orders of magnitude for the on road modes due to electricity use throughout the life cycle. NOx emissions increase between 31% and 760% due to supply chain truck and rail transport. VOC emissions increase due to infrastructure material production and placement by 420% and 1500%. CO emissions increase by between 20% and 320%. The dominating contributions from life cycle components show that the decision to build an infrastructure and operate a transportation mode in Los Angeles has impacts far outside of the city and region. Life cycle results are initially compared at each system’s average occupancy and a breakeven analysis is performed to compare the range at which modes are energy and environmentally competitive.

The results show that including a broad suite of energy and environmental indicators produces potential tradeoffs that are critical to decision makers. While the Orange and Gold line require less energy and produce fewer greenhouse gas emissions per passenger mile traveled than the automobile, this ordering is not necessarily the case for the conventional air emissions. It is possible that a policy that focuses on one pollutant may increase another, highlighting the need for a broad set of indicators and life cycle thinking when making transportation infrastructure decisions.

141377-Thumbnail Image.png
Description

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem‐services‐based “green infrastructure” in urban environments. In some cases the environmental benefits of this infrastructure have

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem‐services‐based “green infrastructure” in urban environments. In some cases the environmental benefits of this infrastructure have been well documented, but they are often unclear, unquantified, and/or outweighed by potential costs. Quantifying biogeochemical processes in urban green infrastructure can improve our understanding of urban ecosystem services and disservices (negative or unintended consequences) resulting from designed urban green spaces. Here we propose a framework to integrate biogeochemical processes into designing, implementing, and evaluating the net effectiveness of green infrastructure, and provide examples for GHG mitigation, stormwater runoff mitigation, and improvements in air quality and health.

ContributorsPataki, Diane E. (Author) / Carreiro, Margaret M. (Author) / Cherrier, Jennifer (Author) / Grulke, Nancy E. (Author) / Jennings, Viniece (Author) / Pincetl, Stephanie Sabine, 1952- (Author) / Pouyat, Richard V. (Author) / Whitlow, Thomas H. (Author) / Zipperer, Wayne C. (Author)
Created2011-02-01
Description

Much of modern urban planning in the United States is concerned with making cities more walkable. However, this is occurring as the urban landscape of the U.S. is altered radically by changes in crime patterns after the summer of 2020. This paper seeks to find out what the relationship is

Much of modern urban planning in the United States is concerned with making cities more walkable. However, this is occurring as the urban landscape of the U.S. is altered radically by changes in crime patterns after the summer of 2020. This paper seeks to find out what the relationship is between walkability and crime in major U.S. cities after 2020. Using multiple linear regressions at the city and neighborhood scale, walkability is found to be a significant, positive predictor of 2019 violent crime rate, 2020 violent crime rate, 2020 property crime rate, and 2020 total crime rate at the city level. It was found to be a positive, but not significant predictor at the neighborhood level. Walkability has no protective influence against crime/rising crime, and it appears that as crime gets worse it tends to get worse in the cities that are more walkable, but other variables such as African American population are better determinants of crime. Urban planners should seek to increase walkability while also finding a way to mitigate potential exposure to crime.

ContributorsWeisman, Holden (Author) / Kelley, Jason (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2023-05