Matching Items (4)
Filtering by

Clear all filters

152658-Thumbnail Image.png
Description
Research indicates that projected increases in global urban populations are not adequately addressed by current food production and planning. In the U.S., insufficient access to food, or the inability to access enough food for an active, healthy life affects nearly 15% of the population. In the face of these challenges,

Research indicates that projected increases in global urban populations are not adequately addressed by current food production and planning. In the U.S., insufficient access to food, or the inability to access enough food for an active, healthy life affects nearly 15% of the population. In the face of these challenges, how are urban planners and other food system professionals planning for more resilient food systems? The purpose of this qualitative case study is to understand the planning and policy resources and food system approaches that might have the ability to strengthen food systems, and ultimately, urban resiliency. It proposes that by understanding food system planning in this context, planning approaches can be developed to strengthen urban food systems. The study uses the conceptual framework of urban planning for food, new community food systems, urban resiliency, and the theory of Panarchy as a model for urban planning and creation of new community food systems. Panarchy theory proposes that entrenched, non-diverse systems can change and adapt, and this study proposes that some U.S. cities are doing just that by planning for new community food systems. It studied 16 U.S. cities considered to be leaders in sustainability practices, and conducted semi-structured interviews with professionals in three of those cities: Portland, OR; San Francisco, CA; and Seattle, WA. The study found that these cities are using innovative methods in food system work, with professionals from many different departments and disciplines bringing interdisciplinary approaches to food planning and policy. Supported by strong executive leadership, these cities are creating progressive urban agriculture zoning policies and other food system initiatives, and using innovative educational programs and events to engage citizens at all socio-economic levels. Food system departments are relatively new, plans and policies among the cities are not consistent, and they are faced with limited resources to adequately track food system-related data. However they are still moving forward with programming to increase food access and improve their food systems. Food-system resiliency is recognized as an important goal, but cities are in varying stages of development for resiliency planning.
ContributorsTaylor, Constance M (Author) / Talen, Emily (Thesis advisor) / Crewe, Katherine (Committee member) / Pijawka, David (Committee member) / Arizona State University (Publisher)
Created2014
151160-Thumbnail Image.png
Description
The sustainability impacts of the extension of the Mass Rapid Transit (MRT) system in suburban Beijing are explored. The research focuses on the neighborhood level, assessing sustainability impacts in terms of greenhouse gas emissions, air pollution, and energy consumption. By emphasizing suburban neighborhoods, the research targets the longest commuting trips,

The sustainability impacts of the extension of the Mass Rapid Transit (MRT) system in suburban Beijing are explored. The research focuses on the neighborhood level, assessing sustainability impacts in terms of greenhouse gas emissions, air pollution, and energy consumption. By emphasizing suburban neighborhoods, the research targets the longest commuting trips, which have the most potential to generate significant sustainability benefits. The methodology triangulates analyses of urban and transportation plans, secondary data, time series spatial imagery, household surveys, and field observation. Three suburban neighborhoods were selected as case studies. Findings include the fact that MRT access stimulates residential development significantly, while having limited impact in terms of commercial or mixed-use (transit-oriented development) property development. While large-scale changes in land use and urban form attributable to MRT access are rare once an area is built up, adaptation occurs in the functions of buildings and areas near MRT stations, such as the emergence of first floor commercial uses in residential buildings. However, station precincts also attract street vendors, tricycles, illegal taxis and unregulated car parking, often impeding access and making immediate surroundings of MRT stations unattractive, perhaps accounting for the lack of significant accessibility premiums (identified by the researcher) near MRT stations in suburban Beijing. Household-based travel behavior surveys reveal that public transport, i.e., MRT and buses, accounts for over half of all commuting trips in the three case study suburban neighborhoods. Over 30% of the residents spend over an hour commuting to work, reflecting the prevalence of long-distance commutes, associated with a dearth of workplaces in suburban Beijing. Non-commuting trips surprisingly tell a different story, a large portion of the residents choose to drive because they are less restrained by travel time. The observed increase of the share of MRT trips to work generates significant benefits in terms of lowered energy consumption, reduced greenhouse gas and traditional air pollution emissions. But such savings could be easily offset if the share of driving trips increases with growing affluence, given the high emission intensities of cars. Bus use is found to be responsible for high local conventional air pollution, indicating that the current bus fleet in Beijing should be phased out and replaced by cleaner buses. Policy implications are put forward based on these findings. The Intellectual Merit of this study centers on increased understanding of the relationship between mass transit provision and sustainability outcomes in suburban metropolitan China. Despite its importance, little research of this genre has been undertaken in China. This study is unique because it focuses on the intermediate meso scale, where adaptation occurs more quickly and dramatically, and is easier to identify.
ContributorsXie, Liou (Author) / Webster, Douglas (Thesis advisor) / Cai, Jianming (Committee member) / Pijawka, David (Committee member) / Guhathakurta, Subhrajit (Committee member) / Arizona State University (Publisher)
Created2012
Description

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts.

Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

Description

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a consistent management culture, and modes reflecting large infrastructure investments to provide an opportunity for robust life cycle assessment of large impact components. An in-depth screening process including consideration of data availability, project age, energy consumption, infrastructure information, access and egress information, and socio-demographic characteristics was used as the second filter. The results of this selection process led to Los Angeles Metro’s Orange and Gold lines.

In this study, the life cycle assessment framework is used to evaluate energy inputs and emissions of greenhouse gases, particulate matter (10 and 2.5 microns), sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. For the Orange line, Gold line, and competing automobile trip, an analysis system boundary that includes vehicle, infrastructure, and energy production components is specified. Life cycle energy use and emissions inventories are developed for each mode considering direct (vehicle operation), ancillary (non-vehicle operation including vehicle maintenance, infrastructure construction, infrastructure operation, etc.), and supply chain processes and services. In addition to greenhouse gas emissions, the inventories are linked to their potential for respiratory impacts and smog formation, and the time it takes to payback in the lifetime of each transit system.

Results show that for energy use and greenhouse gas emissions, the inclusion of life cycle components increases the footprint between 42% and 91% from vehicle propulsion exclusively. Conventional air emissions show much more dramatic increases highlighting the effectiveness of “tailpipe” environmental policy. Within the life cycle, vehicle operation is often small compared to other components. Particulate matter emissions increase between 270% and 5400%. Sulfur dioxide emissions increase by several orders of magnitude for the on road modes due to electricity use throughout the life cycle. NOx emissions increase between 31% and 760% due to supply chain truck and rail transport. VOC emissions increase due to infrastructure material production and placement by 420% and 1500%. CO emissions increase by between 20% and 320%. The dominating contributions from life cycle components show that the decision to build an infrastructure and operate a transportation mode in Los Angeles has impacts far outside of the city and region. Life cycle results are initially compared at each system’s average occupancy and a breakeven analysis is performed to compare the range at which modes are energy and environmentally competitive.

The results show that including a broad suite of energy and environmental indicators produces potential tradeoffs that are critical to decision makers. While the Orange and Gold line require less energy and produce fewer greenhouse gas emissions per passenger mile traveled than the automobile, this ordering is not necessarily the case for the conventional air emissions. It is possible that a policy that focuses on one pollutant may increase another, highlighting the need for a broad set of indicators and life cycle thinking when making transportation infrastructure decisions.