Matching Items (3)
Filtering by

Clear all filters

137656-Thumbnail Image.png
Description
Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella

Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella as anti-cancer agents is their toxicity at the dose required for therapeutic efficacy, but reducing the dose results in diminished efficacy. In this project, we explored novel means to reduce the toxicity of the recombinant attenuated Salmonella by genetically engineering those virulence factors to facilitate maximal colonization of tumor tissues and reduced fitness in normal tissues. We have constructed two sets of Salmonella strains. In the first set, each targeted gene was knocked out by deletion of the gene. In the second set, the predicted promoter region of each gene was replaced with a rhamnose-regulated promoter, which will cease the synthesis of these genes in vivo, a rhamnose-free environment.
ContributorsBenson, Lee Samuel (Author) / Kong, Wei (Thesis director) / Martin, Thomas (Committee member) / Lake, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Center for Infectious Diseases and Vaccinology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
154775-Thumbnail Image.png
Description
In the United States, buildings account for 20–40% of the total energy consumption based on their operation and maintenance, which consume nearly 80% of their energy during their lifecycle. In order to reduce building energy consumption and related problems (i.e. global warming, air pollution, and energy shortages), numerous building technology

In the United States, buildings account for 20–40% of the total energy consumption based on their operation and maintenance, which consume nearly 80% of their energy during their lifecycle. In order to reduce building energy consumption and related problems (i.e. global warming, air pollution, and energy shortages), numerous building technology programs, codes, and standards have been developed such as net-zero energy buildings, Leadership in Energy and Environmental Design (LEED), and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers 90.1. However, these programs, codes, and standards are typically utilized before or during the design and construction phases. Subsequently, it is difficult to track whether buildings could still reduce energy consumption post construction. This dissertation fills the gap in knowledge of analytical methods for building energy analysis studies for LEED buildings. It also focuses on the use of green space for reducing atmospheric temperature, which contributes the most to building energy consumption. The three primary objectives of this research are to: 1) find the relationship between building energy consumption, outside atmospheric temperature, and LEED Energy and Atmosphere credits (OEP); 2) examine the use of different green space layouts for reducing the atmospheric temperature of high-rise buildings; and 3) use data mining techniques (i.e. clustering, isolation, and anomaly detection) to identify data anomalies in the energy data set and evaluate LEED Energy and Atmosphere credits based on building energy patterns. The results found that buildings with lower OEP used the highest amount of energy. LEED OEP scores tended to increase the energy saving potential of buildings, thereby reducing the need for renovation and maintenance. The results also revealed that the shade and evaporation effects of green spaces around buildings were more effective for lowering the daytime atmospheric temperature in the range of 2°C to 6.5°C. Additionally, abnormal energy consumption patterns were found in LEED buildings that used anomaly detection methodology analysis. Overall, LEED systems should be evaluated for energy performance to ensure that buildings continue to save energy after construction.
ContributorsKim, Jonghoon (Author) / Ariaratnam, Samuel T (Thesis advisor) / Chong, Oswald W (Committee member) / Bearup, Wylie K (Committee member) / Arizona State University (Publisher)
Created2016
Description

Charlie Arntzen joined ASU in August 2000 as the Florence Ely Nelson Presidential Endowed Chair and retired in 2016 from the School of Life Sciences and Biodesign Institute. Charlie was the founding Director of the Biodesign Institute.
Important ASU stories include:
1) the creation of the Biodesign Institute,
2) the design and operation

Charlie Arntzen joined ASU in August 2000 as the Florence Ely Nelson Presidential Endowed Chair and retired in 2016 from the School of Life Sciences and Biodesign Institute. Charlie was the founding Director of the Biodesign Institute.
Important ASU stories include:
1) the creation of the Biodesign Institute,
2) the design and operation of the Biodesign labs,
3) the development of ZMapp to fight Ebola,
4) The New American University - a discussion of the importance of collaboration, and
5) several comments about Presidents Coor and Crow and Provost Glick

ContributorsChurch, Kathy (Interviewer) / Arizona State University Retirees Association (Producer)
Created2019-05-08