Matching Items (2)
Filtering by

Clear all filters

156798-Thumbnail Image.png
Description
Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of interface properties and inter-inclusion interactions between microencapsulated PCM, macroencapsulated PCM, and the cementitious matrix. The fact that these inclusions within the composites are by themselves heterogeneous, and contain multiple components necessitate careful application of models to predict the thermal properties. The next phase observes the influence of PCM inclusions on the fracture and fatigue behavior of PCM-cementitious composites. The compliant nature of the inclusion creates less variability in the fatigue life for these composites subjected to cyclic loading. The incorporation of small amounts of PCM is found to slightly improve the fracture properties compared to PCM free cementitious composites. Inelastic deformations at the crack-tip in the direction of crack opening are influenced by the microscale PCM inclusions. After initial laboratory characterization of the microstructure and evaluation of the thermo-mechanical performance of these systems, field scale applicability and performance were evaluated. Wireless temperature and strain sensors for smart monitoring were embedded within a conventional portland cement concrete pavement (PCCP) and a thermal control smart concrete pavement (TCSCP) containing PCM. The TCSCP exhibited enhanced thermal performance over multiple heating and cooling cycles. PCCP showed significant shrinkage behavior as a result of compressive strains in the reinforcement that were twice that of the TCSCP. For building applications, novel PCM-composites coatings were developed to improve and extend the thermal efficiency. These coatings demonstrated a delay in temperature by up to four hours and were found to be more cost-effective than traditional building insulating materials.

The results of this work prove the feasibility of PCMs as a temperature-regulating technology. Not only do PCMs reduce and control the temperature within cementitious systems without affecting the rate of early property development but they can also be used as an auto-adaptive technology capable of improving the thermal performance of building envelopes.
ContributorsAguayo, Matthew Joseph (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Underwood, Benjamin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2018
154775-Thumbnail Image.png
Description
In the United States, buildings account for 20–40% of the total energy consumption based on their operation and maintenance, which consume nearly 80% of their energy during their lifecycle. In order to reduce building energy consumption and related problems (i.e. global warming, air pollution, and energy shortages), numerous building technology

In the United States, buildings account for 20–40% of the total energy consumption based on their operation and maintenance, which consume nearly 80% of their energy during their lifecycle. In order to reduce building energy consumption and related problems (i.e. global warming, air pollution, and energy shortages), numerous building technology programs, codes, and standards have been developed such as net-zero energy buildings, Leadership in Energy and Environmental Design (LEED), and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers 90.1. However, these programs, codes, and standards are typically utilized before or during the design and construction phases. Subsequently, it is difficult to track whether buildings could still reduce energy consumption post construction. This dissertation fills the gap in knowledge of analytical methods for building energy analysis studies for LEED buildings. It also focuses on the use of green space for reducing atmospheric temperature, which contributes the most to building energy consumption. The three primary objectives of this research are to: 1) find the relationship between building energy consumption, outside atmospheric temperature, and LEED Energy and Atmosphere credits (OEP); 2) examine the use of different green space layouts for reducing the atmospheric temperature of high-rise buildings; and 3) use data mining techniques (i.e. clustering, isolation, and anomaly detection) to identify data anomalies in the energy data set and evaluate LEED Energy and Atmosphere credits based on building energy patterns. The results found that buildings with lower OEP used the highest amount of energy. LEED OEP scores tended to increase the energy saving potential of buildings, thereby reducing the need for renovation and maintenance. The results also revealed that the shade and evaporation effects of green spaces around buildings were more effective for lowering the daytime atmospheric temperature in the range of 2°C to 6.5°C. Additionally, abnormal energy consumption patterns were found in LEED buildings that used anomaly detection methodology analysis. Overall, LEED systems should be evaluated for energy performance to ensure that buildings continue to save energy after construction.
ContributorsKim, Jonghoon (Author) / Ariaratnam, Samuel T (Thesis advisor) / Chong, Oswald W (Committee member) / Bearup, Wylie K (Committee member) / Arizona State University (Publisher)
Created2016