Matching Items (8)
Filtering by

Clear all filters

151687-Thumbnail Image.png
Description

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy balance and therefore the environmental temperature in the urban areas. Engineered materials have relatively higher solar energy absorption and tend to trap a relatively higher incoming solar radiation. They also possess a higher heat storage capacity that allows them to retain heat during the day and then slowly release it back into the atmosphere as the sun goes down. This phenomenon is known as the Urban Heat Island (UHI) effect and causes an increase in the urban air temperature. Many researchers believe that albedo is the key pavement affecting the urban heat island. However, this research has shown that the problem is more complex and that solar reflectivity may not be the only important factor to evaluate the ability of a pavement to mitigate UHI. The main objective of this study was to analyze and research the influence of pavement materials on the near surface air temperature. In order to accomplish this effort, test sections consisting of Hot Mix Asphalt (HMA), Porous Hot Mix asphalt (PHMA), Portland Cement Concrete (PCC), Pervious Portland Cement Concrete (PPCC), artificial turf, and landscape gravels were constructed in the Phoenix, Arizona area. Air temperature, albedo, wind speed, solar radiation, and wind direction were recorded, analyzed and compared above each pavement material type. The results showed that there was no significant difference in the air temperature at 3-feet and above, regardless of the type of the pavement. Near surface pavement temperatures were also measured and modeled. The results indicated that for the UHI analysis, it is important to consider the interaction between pavement structure, material properties, and environmental factors. Overall, this study demonstrated the complexity of evaluating pavement structures for UHI mitigation; it provided great insight on the effects of material types and properties on surface temperatures and near surface air temperature.

ContributorsPourshams-Manzouri, Tina (Author) / Kaloush, Kamil (Thesis advisor) / Wang, Zhihua (Thesis advisor) / Zapata, Claudia E. (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
154129-Thumbnail Image.png
Description
Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface

Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface temperature has a microclimatic effect on the air temperature above it. A major increase in local air temperature is caused by heating of solid surfaces in that locality. A case study was done and correlations have been established to calculate the air temperature above a paved surface. Validation with in-situ pavement surface and air temperatures were made. Experimental measurement for the city of Phoenix shows the difference between the ambient air temperature of the city and the microclimatic air temperature above the pavement is approximately 10 degrees Fahrenheit. One mitigation strategy that has been explored is increasing the albedo of the paved surface. Although it will reduce the pavement surface temperature, leading to a reduction in air temperature close to the surface, the increased pavement albedo will also result in greater reflected solar radiation directed towards the building, thus increasing the building solar load. The first effect will imply a reduction in the building energy consumption, while the second effect will imply an increase in the building energy consumption. Simulation is done using the EnergyPlus tool, to find the microclimatic effect of pavement on the building energy performance. The results indicate the cooling energy savings of an office building for different types of pavements can be variable as much as 30%.
ContributorsSengupta, Shawli (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
134315-Thumbnail Image.png
Description
Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived

Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived as being interchangeable. This paper evaluates Sustainable Materials Management (SMM) and Circular Economy (CE) individually and in comparison to see how truly different these frameworks are from one another. This comparison is then extended into a theoretical walk-through of an SMM treatment of concrete pavement in contrast with a CE treatment. With concrete being a ubiquitous in the world's buildings and roads, as well as being a major constituent of Construction & Demolition waste generated, its analysis is applicable to a significant portion of the world's material flow. The ultimate test of differentiation between SMM and CE would ask: 1) If SMM principles guided action, would the outcomes be aligned with or at odds with CE principles? and conversely 2) If CE principles guided action, would the outcomes be aligned with or at odds with SMM principles? Using concrete pavement as an example, this paper seeks to determine whether or not Sustainable Materials Management and Circular Economy are simply different roads leading to the same destination.
ContributorsAbdul-Quadir, Anisa (Author) / Kelman, Candice (Thesis director) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
Description

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban canyons, and for different construction materials.

In UHIs, air is heated by the convective energy transfer from land surface materials and anthropogenic activities. Convection is dependent upon the temperature of the surface, temperature of the air, wind speed, and relative humidity. At the same time, air temperature is also influenced by greenhouse gases (GHG) in the atmosphere. Climatologists project a 1-5°C increase in near-surface air temperature over the next several decades, and 1-4°C specifically for Los Angeles and Maricopa during summertime due to GHG effects. With higher ambient air temperatures, we seek to understand how convection will change in cities and to what ends.

In this paper we develop a spatially explicit methodology for quantifying UHI by estimating the daily convection thermal energy transfer from land to air using publicly-available gridded climatological data, and we estimate how much additional energy will be retained due to lack of convective cooling in scenarios of higher ambient air temperature.

158631-Thumbnail Image.png
Description
ABSTRACT

Historically, Life Cycle Assessments (LCA) guided companies to make better decisions to improve the environmental impacts of their products. However, as new Circular Economy (CE) tools emerge, the usefulness of LCA in assessing linear products grow more and more obsolete. Research Question: How do LCA-based tools account for reuse/multiple life

ABSTRACT

Historically, Life Cycle Assessments (LCA) guided companies to make better decisions to improve the environmental impacts of their products. However, as new Circular Economy (CE) tools emerge, the usefulness of LCA in assessing linear products grow more and more obsolete. Research Question: How do LCA-based tools account for reuse/multiple life cycles of products verses CE-based tools?

The Kaiteki Innovation Framework (KIF) was used to address the question of circularity of two packaging materials using an Environmental LCA to populate its 12 CE dimensions. Any gaps were evaluated with 2 LCA- based and 2 CE-based tools to see which could address the leftover CE dimensions.

Results showed that to complete the KIF template, LCA data required one of the LCA-based tools: Social Life Cycle Assessment (SLCA) and both CE-based tools: Circular Transition Indicators (CTI) and Material Circularity Indicator (MCI) to supplement gaps in the KIF. The LCA addressed 5 of the KIF dimensions: Innovation Category Name, Description, GHG Impact, Other Environmental Impacts, and Value Chain Position. 3 analytical tools addressed 5 more:: Effect on Circularity, Social Impacts, Enabling Technologies, Tier 2 and 3 Requirements, and Value Chain Synergies. None of the tools could address the KIF Dimensions: State of Development or Scale Requirements. All in all, the KIF required both LCA-based and CE-based tools to cover social and socio-economic impacts from a cradle-to-cradle perspective with multiple circular loops in mind. These results can help in the research and development of innovative, circular products that can lead to a more environmentally preferred future.
ContributorsDe Los Santos, Andrew John (Author) / Seager, Thomas (Thesis advisor) / Dooley, Kevin (Committee member) / Buch, Rajesh (Committee member) / Arizona State University (Publisher)
Created2020
158853-Thumbnail Image.png
Description
The construction industry generates tremendous amounts of data every day. Data can inform practitioners to increase their project performance as well as the quality of the resulting built environment. The data gathered from each stage has unique characteristics, and processing them to the appropriate information is critical. However, it is

The construction industry generates tremendous amounts of data every day. Data can inform practitioners to increase their project performance as well as the quality of the resulting built environment. The data gathered from each stage has unique characteristics, and processing them to the appropriate information is critical. However, it is often difficult to measure the impact of the research across project phases (i.e., planning, design, construction, operation and maintenance, and end-of-life). The goal of this dissertation is to present how industry data can be used to make an impact on construction practices and test a suite of methods to measure the impact of construction research across project phases. The dissertation provides examples of impactful research studies for each project phase to demonstrate the collection and utilization of data generated from each stage and to assess the potential tangible impact on construction industry practices. The completed studies presented both quantitative and qualitative analyses. The first study focuses on the planning phase and provides a practice to improve frond end planning (FEP) implementation by developing the project definition rating index (PDRI) maturity and accuracy total rating system (MATRS). The second study uses earned value management system (EVMS) information from the design and construction phases to support reliable project control and management. The dissertation then provides a third study, this time focusing on the operations phase and comparing the impact of project delivery methods using the international roughness index (IRI). Lastly, the end-of-life or decommissioning phase is tackled through a study that gauges the monetary impact of the circular economy concept applied to reuse construction and demolition (C&D) waste. This dissertation measures the impact of the research according to the knowledge mobilization (KMb) theory, which illustrates the value of the work to the public and to practitioners.
ContributorsCho, Namho (Author) / El Asmar, Mounir (Thesis advisor) / Gibson, George (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2020
158376-Thumbnail Image.png
Description
The circular economy is viewed as a solution to many of the environmental and social ills that the linear economy has exacerbated. Whether it is through refill solutions or redesigning a cardboard shipping container, fast-moving consumer goods (FMCG) brands are rethinking the way their products are delivered to consumers through

The circular economy is viewed as a solution to many of the environmental and social ills that the linear economy has exacerbated. Whether it is through refill solutions or redesigning a cardboard shipping container, fast-moving consumer goods (FMCG) brands are rethinking the way their products are delivered to consumers through business model innovations that promote circularity. The consumer plays the important, often overlooked, role of enabler within circular business models. This study aims to increase broader understanding of what motivates circular consumption of fast-moving consumer goods while analyzing the relationship between motivators and the behaviors required to participate. Semi-structured interviews provide insights from consumers who are currently purchasing household cleansers from brands that operate with a circular business model. Results from this study highlight a group of consumers that are distinguished by their common desire to reduce their personal consumption of plastics. There is clear indication that these consumers are in fact seeking out ways to consume more sustainably. A significant subset of this group expresses concern regarding ingredients used in the products. Health concerns for themselves, their family, or a pet are driving a desire to understand product ingredients. There is evidence to indicate that the concern for personal consumption of plastics is being driven by information distributed via social media and supported by targeted advertisements for brands that address this concern.
ContributorsBrown, Jennifer B (Author) / Dooley, Kevin (Thesis advisor) / Fischer, Daniel (Committee member) / Buch, Rajesh (Committee member) / Arizona State University (Publisher)
Created2020