Matching Items (3)
Filtering by

Clear all filters

141418-Thumbnail Image.png
Description

Presentation by David Sailor, professor in the School of Geographical Sciences and Urban Planning and director of the Urban Climate Research Center at ASU. Sailer's presentation addresses how to define urban heat islands (UHI), and decisions about why and how to measure these complex ecosystems.

ContributorsSailor, David (Author)
Created2017-09-07
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12
141373-Thumbnail Image.png
Description

A web-based software tool has been developed to assist urban planners and air quality management officials in assessing the potential ofurban heat island mitigation strategies to affect the urban climate, air quality, and energy consumption within their cities. The user of thetool can select from over 170 US cities for

A web-based software tool has been developed to assist urban planners and air quality management officials in assessing the potential ofurban heat island mitigation strategies to affect the urban climate, air quality, and energy consumption within their cities. The user of thetool can select from over 170 US cities for which to conduct the analysis, and can specify city-wide changes in surface reflectivity and/or veg-etative cover. The Mitigation Impact Screening Tool (MIST) then extrapolates results from a suite of simulations for 20 cities to estimate airtemperature changes associated with the specified changes in surface characteristics for the selected city. Alternatively the user can simply definea nominal air temperature reduction that they hope to achieve with an unspecified mitigation scenario. These air temperature changes are theninput to energy and ozone models to estimate the impact that the mitigation action may have on the selected city. The results presented by MISTinclude a high degree of uncertainty and are intended only as a first-order estimate that urban planners can use to assess the viability of heatisland mitigation strategies for their cities. As appropriate, MIST analyses should be supplemented by more detailed modeling.

ContributorsSailor, David (Author) / Deitsch, Nikolaas (Author)
Created2007-02-05