Matching Items (3)
Filtering by

Clear all filters

Description

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it is appropriate, required, or even desirable, concepts like social equity, human rights, ethical sharing of commons, etc. have increasingly come under the umbrella of the sustainability discourse. Even if “sustainability” as a bare word doesn’t imply those things, the concept of sustainable development certainly has taken on those dimensions. That sustainability might be redefined or re-scoped to be a purely environmental or a rigidly scientific endeavor, is not an immediate concern of this paper, though if that were to occur (whether for the sake of simplicity or pragmatics), it should be done explicitly so the ethical sub-discourse can be maintained (indeed, sustained) by some other movement.

This paper proposes a mechanism by which such a migration in terms can be prevented. First, in reviewing the work of Denis Goulet, it shows the solid basis for including an ethical aspect in the sustainability discourse. Second, it points out that Karl-Henrik Robèrt’s highly-lauded and broadly-employed sustainability framework, The Natural Step, is deficient in this area. This deficiency provides the impetus for, finally, proposing a mechanism by which The Natural Step can be extended to include the important social and ethical dimensions of sustainability. This mechanism is based on the capabilities approaches that, in many respects, evolved out of Goulet’s early work. Augmented accordingly, TNS can continue to be used without fear of overlooking the social and ethical aspects of the sustainability discourse.

Description

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is infilled along the proposed light rail transit line expansion. In each case, and in every variation of possible future scenarios, there were distinct life-cycle benefits from both developing in more dense urban structures and reducing automobile travel in the process.

Results from the report are superseded by our publication in Environmental Science and Technology.

Created2012-12
Description

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
   

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
       1. How historical floods changed roadway designs.
       2. Precipitation forecasts to mid-century.
       3. The vulnerability of roadways to more frequent precipitation.
       4. Adaptation strategies focusing on safe-to-fail thinking.
       5. Strategies for overcoming institutional barriers to enable transitions.
The students designed an EPA Storm Water Management Model for the City of Phoenix and forced it with future precipitation forecasts. Vulnerability indexes were created for infrastructure performance and social outcomes. A multi-criteria decision analysis framework was created to prioritize infrastructure adaptation strategies.