Matching Items (5)
Filtering by

Clear all filters

Description

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts.

Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

Description

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This

Vehicle trips presently account for approximately 50% of San Francisco’s greenhouse gas emissions (San Francisco County Transportation Authority, 2008). City and county officials have developed aggressive strategies for the future of passenger transportation in the metropolitan area, and are determined to move away from a “business as usual” future. This project starts with current-state source data from a life-cycle comparison of urban transportation systems (Chester, Horvath, & Madanat, 2010), and carries the inventoried emissions and energy usage through by way of published future scenarios for San Francisco.

From the extrapolated calculations of future emissions/energy, the implied mix of transportation modes can be backed out of the numbers. Five scenarios are evaluated, from “business as usual” through very ambitious “healthy environment” goals. The results show that when planners and policymakers craft specific goals or strategies for a location or government, those targets, even if met, are unlikely to result in the intended physical outcomes. City and state governments would be wise to support broad strategy goals (like 20% GHG reduction) with prioritized specifics that can inform real projects leading to the goals (for instance, add 5 miles of bike path per year through 2020, or remove 5 parking garages and replace them with transit depots). While these results should not be used as predictions or forecasts, they can inform the crafters of future transportation policy as an opportunity for improvement or a cautionary tale.

Created2012-05
Description

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it

While the definition of sustainability remains open for all to contribute to and participate in, there do seem to be some notions it has come to embody that should not be neglected as the definition coalesces. Among these are the ethical and social dimensions of sustainability. Whether or not it is appropriate, required, or even desirable, concepts like social equity, human rights, ethical sharing of commons, etc. have increasingly come under the umbrella of the sustainability discourse. Even if “sustainability” as a bare word doesn’t imply those things, the concept of sustainable development certainly has taken on those dimensions. That sustainability might be redefined or re-scoped to be a purely environmental or a rigidly scientific endeavor, is not an immediate concern of this paper, though if that were to occur (whether for the sake of simplicity or pragmatics), it should be done explicitly so the ethical sub-discourse can be maintained (indeed, sustained) by some other movement.

This paper proposes a mechanism by which such a migration in terms can be prevented. First, in reviewing the work of Denis Goulet, it shows the solid basis for including an ethical aspect in the sustainability discourse. Second, it points out that Karl-Henrik Robèrt’s highly-lauded and broadly-employed sustainability framework, The Natural Step, is deficient in this area. This deficiency provides the impetus for, finally, proposing a mechanism by which The Natural Step can be extended to include the important social and ethical dimensions of sustainability. This mechanism is based on the capabilities approaches that, in many respects, evolved out of Goulet’s early work. Augmented accordingly, TNS can continue to be used without fear of overlooking the social and ethical aspects of the sustainability discourse.

Description

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however,

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however, a dearth of research focused at the metropolitan scale where transportation policy and planning are frequently decided.

Using Los Angeles County, California, as a case study, we investigate the Peak Car theory and whether social, economic, and technical factors, including roadways that have become saturated at times, may be contributing to changes in travel behavior. After peaking in 2002, vehicle travel in Los Angeles County declined by 3.4 billion (or 4.1%) by 2010. The effects of changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics, income, and freight are first assessed. It is possible, and likely, that these factors alone explain the reduction in travel. However, the growth in congestion raises questions of how a constricting supply of roadway network capacity may contribute to travel behavior changes.

There have been no studies that have directly assessed how the maturing supply of infrastructure coupled with increasing demand affect travel behavior. We explore regional and urban factors in Los Angeles to provide insight into the drivers of Peak Car at city scales where the majority of travel occurs. The results show that a majority of the decline in VMT in Los Angeles can be attributed the rising fuel prices during the 2000s. While overall roadway network capacity is not yet a limiting factor for vehicle travel there is some evidence that suggests that congestion along certain corridors may be shifting some automobile travel to alternatives. The results also suggest that the relative impact of any factor on travel demand is likely to vary from one locale to another and Peak Car analysis across large geographic areas obscures the nuisances of travel behavior at a local scale.

Description

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of

With potential for automobiles to cause air pollution and greenhouse gas emissions relative to other modes, there is concern that automobiles accessing or egressing public transportation may significantly increase human and environmental impacts from door-to-door transit trips. Yet little rigorous work has been developed that quantitatively assesses the effects of transit access or egress by automobiles.

This research evaluates the life-cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is developed. First and last mile automobile trips were found to increase multimodal transit trip emissions, mitigating potential impact reductions from transit usage. In some cases, a multimodal transit trips with automobile access or egress may be higher than a competing automobile trip.

In the near-term, automobile access or egress in some Los Angeles transit systems may account for up to 66% of multimodal greenhouse gas trip emissions, and as much as 75% of multimodal air quality impacts. Fossil fuel energy generation and combustion, low vehicle occupancies, and longer trip distances contribute most to increased multimodal trip impacts. Spatial supply chain analysis indicates that life-cycle air quality impacts may occur largely locally (in Los Angeles) or largely remotely (elsewhere) depending on the propulsion method and location of upstream life-cycle processes. Reducing 10% of transit system greenhouse emissions requires a shift of 23% to 50% of automobile access or egress trips to a zero emissions mode.

A corresponding peer-reviewed journal publication is available here:
Greenhouse Gas and Air Quality Effects of Auto First-Last Mile Use With Transit, Christopher Hoehne and Mikhail Chester, 2017, Transportation Research Part D, 53, pp. 306-320,