Matching Items (2)
Filtering by

Clear all filters

103-Thumbnail Image.png
Description

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling centers is not based on the location of existing cooling resources (residential air conditioning and air conditioned public space), raising questions of the equitability of access to heat refuges.

Using Los Angeles County, California and Maricopa County, Arizona (whose county seat is Phoenix) we explore the distribution of private and public cooling resources and access inequities at the household level. We do this by evaluating the presence of in-home air conditioning and developing a walking-based accessibility measure to air conditioned public space using a combined cumulative opportunities-gravity approach. We find significant inequities in the distribution of residential air conditioning across both regions which are largely attributable to building age and inter/intra-regional climate differences. There are also regional disparities in walkable access to public cooled space.

At average walking speeds, we find that official cooling centers are only accessible to a small fraction of households (3% in Los Angeles, 2% in Maricopa) while a significantly higher number of households (80% in Los Angeles, 39% in Maricopa) have access to at least one other type of public cooling resource which includes libraries and commercial establishments. Aggregated to a neighborhood level, we find that there are areas within each region where access to cooled space (either public or private) is limited which may increase the health risks associated with heat.

Created2016
Description

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however,

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however, a dearth of research focused at the metropolitan scale where transportation policy and planning are frequently decided.

Using Los Angeles County, California, as a case study, we investigate the Peak Car theory and whether social, economic, and technical factors, including roadways that have become saturated at times, may be contributing to changes in travel behavior. After peaking in 2002, vehicle travel in Los Angeles County declined by 3.4 billion (or 4.1%) by 2010. The effects of changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics, income, and freight are first assessed. It is possible, and likely, that these factors alone explain the reduction in travel. However, the growth in congestion raises questions of how a constricting supply of roadway network capacity may contribute to travel behavior changes.

There have been no studies that have directly assessed how the maturing supply of infrastructure coupled with increasing demand affect travel behavior. We explore regional and urban factors in Los Angeles to provide insight into the drivers of Peak Car at city scales where the majority of travel occurs. The results show that a majority of the decline in VMT in Los Angeles can be attributed the rising fuel prices during the 2000s. While overall roadway network capacity is not yet a limiting factor for vehicle travel there is some evidence that suggests that congestion along certain corridors may be shifting some automobile travel to alternatives. The results also suggest that the relative impact of any factor on travel demand is likely to vary from one locale to another and Peak Car analysis across large geographic areas obscures the nuisances of travel behavior at a local scale.