Matching Items (5)
Filtering by

Clear all filters

Description

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap.

For urban systems, many built environment processes have been investigated but need to be expanded with life cycle assessment for understanding ecosphere impacts. To pilot these new methods, a material inventory of the building infrastructure of Phoenix, Arizona can be coupled with LCA to gain perspective on the impacts assessment for built structures in Phoenix. This inventory will identify the origins of materials stocks, and the solid and air emissions waste associated with their raw material extraction, processing, and construction and identify key areas of future research necessary to fully account for ecosystem services in urban sustainability assessments. Based on this preliminary study, the ecosystem service impacts of metropolitan Phoenix stretch far beyond the county boundaries. A life cycle accounting of the Phoenix’s embedded building materials will inform policy and decision makers, assist with community education, and inform the urban sustainability community of consequences.

Description

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study used a Phoenix area hospital to create a start point for the waste and a general estimation of how much BMW the hospital disposes of. The system boundary for the LCA includes BMW generated at the Phoenix-area Hospital as it is travels to Stericycle, where it is autoclaved, and then transported to a landfill for disposal. The results of this retrospective, end-of-life LCA using this boundary enables hospital employees and policy makers to understand the environmental impact of placing items in the biohazardous waste bin.

Created2014-06-13
Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)
157746-Thumbnail Image.png
Description
Imagine you live in a place without any storm water or wastewater systems!

Wastewater and storm water systems are two of the most crucial systems for urban infrastructure. Water resources have become more limited and expensive in arid and semi-arid regions. According to the fourth World Water Development Report, over

Imagine you live in a place without any storm water or wastewater systems!

Wastewater and storm water systems are two of the most crucial systems for urban infrastructure. Water resources have become more limited and expensive in arid and semi-arid regions. According to the fourth World Water Development Report, over 80% of global wastewater is released into the environment without adequate treatment. Wastewater collection and treatment systems in the Kingdom of Saudi Arabia (KSA) covers about 49% of urban areas; about 25% of treated wastewater is used for landscape and crop irrigation (Ministry of Environment Water and Agriculture [MEWA], 2017). According to Guizani (2016), during each event of flooding, there are fatalities. In 2009, the most deadly flood occurred in Jeddah, KSA within more than 160 lives lost. As a consequence, KSA has set a goal to provide 100% sewage collection and treatment services to every city with a population above 5000 by 2025, where all treated wastewater will be used.

This research explores several optimization models of planning and designing collection systems, such as regional wastewater and stormwater systems, in order to understand and overcome major performance-related disadvantages and high capital costs. The first model (M-1) was developed for planning regional wastewater system, considering minimum costs of location, type, and size sewer network and wastewater treatment plants (WWTPs). The second model (M-2) was developed for designing a regional wastewater system, considering minimum hydraulic design costs, such as pump stations, commercial diameters, excavation costs, and WWTPs. Both models were applied to the Jizan region, KSA.

The third model (M-3) was developed to solve layout and pipe design for storm water systems simultaneously. This model was applied to four different case scenarios, using two approaches for commercial diameters. The fourth model (M-4) was developed to solve the optimum pipe design of a storm sewer system for given layouts. However, M-4 was applied to a storm sewer network published in the literature.

M-1, M-2, and M-3 were developed in the general algebraic modeling system (GAMS) program, which was formulated as a mixed integer nonlinear programming (MINLP) solver, while M-4 was formulated as a nonlinear programming (NLP) procedure.
ContributorsAlfaisal, Faisal M (Author) / Mays, Larry W. (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2019