Matching Items (3)

Filtering by

Clear all filters

Comparative Life Cycle Assessment of Reused Versus Disposable Dental Burs

Description

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. The comparative LCA evaluated a reusable dental bur (specifically, a 2.00mm Internal Irrigation Pilot Drill) reused 30 instances versus 30 identical burs used as disposables.

The LCA methodology was performed using framework described by the International Organization for Standardization (ISO) 14040 series. Sensitivity analyses were performed with respect to ultrasonic and autoclave loading. Findings from this research showed that when the ultrasonic and autoclave are loaded optimally, reusable burs had 40% less of an environmental impact than burs used on a disposable basis. When the ultrasonic and autoclave were loaded to 66% capacity, there was an environmental breakeven point between disposable and reusable burs. Eutrophication, carcinogenic impacts, non-carcinogenic impacts, and acidification were limited when cleaning equipment (i.e., ultrasonic and autoclave) were optimally loaded. Additionally, the bur’s packaging materials contributed more negative environmental impacts than the production and use of the bur itself. Therefore, less materially-intensive packaging should be used. Specifically, the glass fiber reinforced plastic casing should be substituted for a material with a reduced environmental footprint.

Contributors

Created

Date Created
2013-05

California High Speed Resilience to Climate Change

Description

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the energy, cost, and GHG emissions associated with raising the track, adding fly ash to the concrete mixture in place of a percentage of cement, and running the HSR on solar electricity rather than the current electricity mix. Data was collected from a variety of sources including other LCAs, research studies, feasibility studies, and project information from companies, agencies, and researchers in order to determine what the cost, energy requirements, and associated GHG emissions would be for each of these changes. This data was then used to calculate results of cost, energy, and GHG emissions for the three different changes. The results show that the greatest source of cost is the raised track (Design/Construction Phase), and the greatest source of GHG emissions is the concrete (also Design/Construction Phase).

Contributors

Created

Date Created
2014-06-13

The Water, Energy, & Infrastructure Co-Benefits of Smart Growth Planning in Phoenix

Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

Contributors