Matching Items (10)
Filtering by

Clear all filters

152244-Thumbnail Image.png
Description
Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR)

Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile technology that could potentially provide rich, contextualized learning for understanding concepts related to statistics education. This study examined the effects of AR experiences for learning basic statistical concepts. Using a 3 x 2 research design, this study compared learning gains of 252 undergraduate and graduate students from a pre- and posttest given before and after interacting with one of three types of augmented reality experiences, a high AR experience (interacting with three dimensional images coupled with movement through a physical space), a low AR experience (interacting with three dimensional images without movement), or no AR experience (two dimensional images without movement). Two levels of collaboration (pairs and no pairs) were also included. Additionally, student perceptions toward collaboration opportunities and engagement were compared across the six treatment conditions. Other demographic information collected included the students' previous statistics experience, as well as their comfort level in using mobile devices. The moderating variables included prior knowledge (high, average, and low) as measured by the student's pretest score. Taking into account prior knowledge, students with low prior knowledge assigned to either high or low AR experience had statistically significant higher learning gains than those assigned to a no AR experience. On the other hand, the results showed no statistical significance between students assigned to work individually versus in pairs. Students assigned to both high and low AR experience perceived a statistically significant higher level of engagement than their no AR counterparts. Students with low prior knowledge benefited the most from the high AR condition in learning gains. Overall, the AR application did well for providing a hands-on experience working with statistical data. Further research on AR and its relationship to spatial cognition, situated learning, high order skill development, performance support, and other classroom applications for learning is still needed.
ContributorsConley, Quincy (Author) / Atkinson, Robert K (Thesis advisor) / Nguyen, Frank (Committee member) / Nelson, Brian C (Committee member) / Arizona State University (Publisher)
Created2013
152844-Thumbnail Image.png
Description
For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the

For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the tangible learning environment and help researchers to better understand how we can design tangible learning environments to best support student learning. Specifically, the prompts explicitly encourage users to make use of their physical environment by asking students to perform a number of gestures and behaviors while prompting students about domain-specific knowledge. To test the effectiveness of these prompts that combine elements of cognition and physical movements, the performance and behavior of students who encounter these prompts while using TAG will be compared against the performance and behavior of students who encounter a more traditional set of cognitive prompts that would typically be used within a virtual learning environment. Following this study, data was analyzed using a novel modeling and analysis tool that combines enhanced log annotation using video and user model generation functionalities to highlight trends amongst students.
ContributorsThomas, Elissa (Author) / Burleson, Winslow (Thesis advisor) / Muldner, Katarzyna (Committee member) / Walker, Erin (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2014
134934-Thumbnail Image.png
Description
The purpose of this study, originally, was to contribute to the completion of a meta-analysis conducted by Mara Wierstra from the University of Virginia. Wierstra had requested individual participant data from two separate studies conducted in our lab: "Acute bouts of assisted cycling improves cognitive and upper extremity movement functions

The purpose of this study, originally, was to contribute to the completion of a meta-analysis conducted by Mara Wierstra from the University of Virginia. Wierstra had requested individual participant data from two separate studies conducted in our lab: "Acute bouts of assisted cycling improves cognitive and upper extremity movement functions in adolescents with Down syndrome" and "Assisted Cycling Therapy (ACT) improves inhibition in adolescents with autism spectrum disorder." From the data requested, the participants were required to complete three separate tests (i.e., Tower of London, Trail Making Task and the Stroop Test). After compiling the data and sending it to her, we decided to conduct a small meta-analysis of our own, drawing connecting conclusions from the data from the two studies. We concluded that observationally our data suggest an advantage for ACT over voluntary cycling and no cycling across two separate populations (i.e., Autism Spectrum Disorder and Down syndrome), and across different measures of executive function (i.e., Stroop Test, Trail Making Test, and Tower of London). The data suggest that the ACT interventions may promote the upregulation of neurotropic factors leading to neurogenesis in the prefrontal cortex of the brain.
ContributorsParker, Cade Joseph (Author) / Ringenbach, Shannon (Thesis director) / Holzapfel, Simon (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155745-Thumbnail Image.png
Description
In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the

In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the memory accessibility in participants during the alternative uses tasks were conducted. Experiment 1 directly instructed participants to either generate usages based on memory or not from memory; Experiment 2 provided participants with object cues that were either very common or very rare in daily life (i.e., bottle vs. canteen); Experiment 3 replicated the same manipulation from Experiment 2 with much longer generation time (10 minutes in Experiment 2 vs. 30 minutes in Experiment 3). The oppositional processes theory predicted that participants who had less access to direct and unaltered usages (i.e., told to not use memory, were given rare cues, or were outputting items later in the generation period) during the task would be more creative. Results generally supported the predictions in Experiments 1 and 2 where participants from conditions which limited their access to memory generated more novel usages that were considered more creative by independent coders. Such effects were less prominent in Experiment 3 with extended generation time but the trends remained the same.
ContributorsXu, Dongchen (Author) / Brewer, Gene (Thesis advisor) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
155180-Thumbnail Image.png
Description
The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the thought processes and observational techniques of art experts for the learning benefit of novices through digital annotations, overlays, and side-by-side

The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the thought processes and observational techniques of art experts for the learning benefit of novices through digital annotations, overlays, and side-by-side comparisons that when viewed on mobile device appear directly on works of art.

Using a 2 x 3 factorial design, this study compared learner outcomes and motivation across technologies (audio-only, video, AR) and groupings (individuals, dyads) with 182 undergraduate and graduate students who were self-identified art novices. Learner outcomes were measured by post-activity spoken responses to a painting reproduction with the pre-activity response as a moderating variable. Motivation was measured by the sum score of a reduced version of the Instructional Materials Motivational Survey (IMMS), accounting for attention, relevance, confidence, and satisfaction, with total time spent in learning activity as the moderating variable. Information on participant demographics, technology usage, and art experience was also collected.

Participants were randomly assigned to one of six conditions that differed by technology and grouping before completing a learning activity where they viewed four high-resolution, printed-to-scale painting reproductions in a gallery-like setting while listening to audio-recorded conversations of two experts discussing the actual paintings. All participants listened to expert conversations but the video and AR conditions received visual supports via mobile device.

Though no main effects were found for technology or groupings, findings did include statistically significant higher learner outcomes in the elements of design subscale (characteristics most represented by the visual supports of the AR application) than the audio-only conditions. When participants saw digital representations of line, shape, and color directly on the paintings, they were more likely to identify those same features in the post-activity painting. Seeing what the experts see, in a situated environment, resulted in evidence that participants began to view paintings in a manner similar to the experts. This is evidence of the value of the temporal and spatial contiguity afforded by AR in cognitive modeling learning environments.
ContributorsShapera, Daniel Michael (Author) / Atkinson, Robert K (Thesis advisor) / Nelson, Brian C (Committee member) / Erickson, Mary (Committee member) / Arizona State University (Publisher)
Created2016
155225-Thumbnail Image.png
Description
Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents

Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents the same level of text to all users, and it is limited in its ability to provide error feedback, as it can only determine whether a user action is right or wrong. EMBRACE could help readers learn more effectively if it personalized its instruction with texts that fit their current reading level and feedback that addresses ways to correct their mistakes. Improvements were made to the system by applying design principles of intelligent tutoring systems (ITSs). The new system added features to track the student’s reading comprehension skills, including vocabulary, syntax, and usability, based on various user actions, as well as features to adapt text complexity and provide more specific error feedback using the skills. A pilot study was conducted with 7 non-ELL students to evaluate the functionality and effectiveness of these features. The results revealed both strengths and weaknesses of the ITS. While skill updates appeared most accurate when users made particular kinds of vocabulary and syntax errors, it was not able to correctly identify other kinds of syntax errors or provide feedback when skill values became too high. Additionally, vocabulary error feedback and adapting the complexity of syntax were helpful, but syntax error feedback and adapting the complexity of vocabulary were not as helpful. Overall, children enjoy using EMBRACE, and building an intelligent tutoring system into the application presents a promising approach to make reading a both fun and effective experience.
ContributorsWong, Audrey (Author) / Walker, Erin (Thesis advisor) / Nelson, Brian (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2017
151585-Thumbnail Image.png
Description
The present research study investigated the effects of 8 versions of a computer-based vocabulary learning program on receptive and productive knowledge levels of college students. The participants were 106 male and 103 female Korean EFL students from Kyungsung University and Kwandong University in Korea. Students who participated in versions of

The present research study investigated the effects of 8 versions of a computer-based vocabulary learning program on receptive and productive knowledge levels of college students. The participants were 106 male and 103 female Korean EFL students from Kyungsung University and Kwandong University in Korea. Students who participated in versions of the vocabulary learning program with target-word based sentences as well as definitions tended to perform better on receptive and productive vocabulary assessments than those who participated in versions of the program with definitions of words only. Furthermore, results indicated that the difference in receptive scores from immediately after the program to one week later showed a higher drop-rate than the difference in productive scores. In addition, female learners performed receptively better than male learners in post and one-week delayed tests, but significant gender difference failed to occur for the productivity measure. Overall, these results emphasized the importance of productive vocabulary knowledge for better retention of English vocabulary words.
ContributorsKim, Scott Sungki (Author) / Nelson, Brian C (Thesis advisor) / Green, Samuel B (Committee member) / Bitter, Gary G. (Committee member) / James, Mark A (Committee member) / Arizona State University (Publisher)
Created2013
155515-Thumbnail Image.png
Description
Currently, educational games are designed with the educational content as the primary factor driving the design of the game. While this may seem to be the optimal approach, this design paradigm causes multiple issues. For one, the games themselves are often not engaging as game design principles were put aside

Currently, educational games are designed with the educational content as the primary factor driving the design of the game. While this may seem to be the optimal approach, this design paradigm causes multiple issues. For one, the games themselves are often not engaging as game design principles were put aside in favor of increasing the educational value of the game. The other issue is that the code base of the game is mostly or completely unusable for any other games as the game mechanics are too strongly connected to the educational content being taught. This means that the mechanics are impossible to reuse in future projects without major revisions, and starting over is often more time and cost efficient.

This thesis presents the Content Agnostic Game Engineering (CAGE) model for designing educational games. CAGE is a way to separate the educational content from the game mechanics without compromising the educational value of the game. This is done by designing mechanics that can have multiple educational contents layered on top of them which can be switched out at any time. CAGE allows games to be designed with a game design first approach which allows them to maintain higher engagement levels. In addition, since the mechanics are not tied to the educational content several different educational topics can reuse the same set of mechanics without requiring major revisions to the existing code.

Results show that CAGE greatly reduces the amount of code needed to make additional versions of educational games, and speeds up the development process. The CAGE model is also shown to not induce high levels of cognitive load, allowing for more in depth topic work than was attempted in this thesis. However, engagement was low and switching the active content does interrupt the game flow considerably. Altering the difficulty of the game in real time in response to the affective state of the player was not shown to increase engagement. Potential causes of the issues with CAGE games and potential fixes are discussed.
ContributorsBaron, Tyler John (Author) / Amresh, Ashish (Thesis advisor) / Nelson, Brian C (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2017
157685-Thumbnail Image.png
Description
Evidence suggests that Augmented Reality (AR) may be a powerful tool for

alleviating certain, lightly held scientific misconceptions. However, many

misconceptions surrounding the theory of evolution are deeply held and resistant to

change. This study examines whether AR can serve as an effective tool for alleviating

these misconceptions by

Evidence suggests that Augmented Reality (AR) may be a powerful tool for

alleviating certain, lightly held scientific misconceptions. However, many

misconceptions surrounding the theory of evolution are deeply held and resistant to

change. This study examines whether AR can serve as an effective tool for alleviating

these misconceptions by comparing the change in the number of misconceptions

expressed by users of a tablet-based version of a well-established classroom simulation to

the change in the number of misconceptions expressed by users of AR versions of the

simulation.

The use of realistic representations of objects is common for many AR

developers. However, this contradicts well-tested practices of multimedia design that

argue against the addition of unnecessary elements. This study also compared the use of

representational visualizations in AR, in this case, models of ladybug beetles, to symbolic

representations, in this case, colored circles.

To address both research questions, a one-factor, between-subjects experiment

was conducted with 189 participants randomly assigned to one of three conditions: non

AR, symbolic AR, and representational AR. Measures of change in the number and types

of misconceptions expressed, motivation, and time on task were examined using a pair of

planned orthogonal contrasts designed to test the study’s two research questions.

Participants in the AR-based condition showed a significantly smaller change in

the number of total misconceptions expressed after the treatment as well as in the number

of misconceptions related to intentionality; none of the other misconceptions examined

showed a significant difference. No significant differences were found in the total

number of misconceptions expressed between participants in the representative and

symbolic AR-based conditions, or on motivation. Contrary to the expectation that the

simulation would alleviate misconceptions, the average change in the number of

misconceptions expressed by participants increased. This is theorized to be due to the

juxtaposition of virtual and real-world entities resulting in a reduction in assumed

intentionality.
ContributorsHenry, Matthew McClellan (Author) / Atkinson, Robert K (Thesis advisor) / Johnson-Glenberg, Mina C (Committee member) / Nelson, Brian C (Committee member) / Arizona State University (Publisher)
Created2019
161943-Thumbnail Image.png
Description
This dissertation takes up the topic of simulations in social studies education. Though simulations are taken up widely by social studies educators, and though they are described as best practice in social studies standards documents and teacher evaluation rubrics, the term lacks specificity. Additionally, design, research, and implementation efforts associated

This dissertation takes up the topic of simulations in social studies education. Though simulations are taken up widely by social studies educators, and though they are described as best practice in social studies standards documents and teacher evaluation rubrics, the term lacks specificity. Additionally, design, research, and implementation efforts associated with social studies simulations often lack theoretical grounding and clarity. A major consequence of this lack of conceptual and theoretical clarity is curriculum violence perpetrated upon young people, particularly along racial and socioeconomic lines, as the result of poorly conceived simulations.This dissertation is presented as three standalone manuscripts, bookended by an Introduction and a Conclusion. In the Introduction, I present an overview of the social studies simulation literature. In Chapter Two, I propose mechanics analysis, a methodological approach to systematically analyzing social studies simulations and games. In Chapter Three, I report on an empirical study using mechanics analysis to analyze three digital social studies-themed simulation games: Offworld Trading Company, Frostpunk, and Surviving Mars. In Chapter Four, I build on the previous two chapters to coordinate the salient research and theory across three field—history and social studies education, learning sciences, and games scholarship—to propose a design theory for a particular kind of simulation game: disciplinarily integrated, consequentially engaging simulation games, or DICES. Finally, I conclude with Chapter Five, in which I highlight what I view as the implications of this work as a whole, including for teachers, teacher educators, researchers, and designers.
ContributorsKessner, Taylor Milan (Author) / Harris, Lauren M (Thesis advisor) / Gee, Elisabeth R (Thesis advisor) / Nelson, Brian C (Committee member) / Stoddard, Jeremy (Committee member) / Arizona State University (Publisher)
Created2021