Matching Items (2)
Filtering by

Clear all filters

149693-Thumbnail Image.png
Description
While there are many elements to consider when determining one's risk of heat or cold stress, acclimation could prove to be an important factor to consider. Individuals who are participating in more strenuous activities, while being at a lower risk, will still feel the impacts of acclimation to an

While there are many elements to consider when determining one's risk of heat or cold stress, acclimation could prove to be an important factor to consider. Individuals who are participating in more strenuous activities, while being at a lower risk, will still feel the impacts of acclimation to an extreme climate. To evaluate acclimation in strenuous conditions, I collected finishing times from six different marathon races: the New York City Marathon (New York City, New York), Equinox Marathon (Fairbanks, Alaska), California International Marathon (Sacramento, California), LIVESTRONG Austin Marathon (Austin, Texas), Cincinnati Flying Pig Marathon (Cincinnati, Ohio), and the Ocala Marathon (Ocala, Florida). Additionally, I collected meteorological variables for each race day and the five days leading up to the race (baseline). I tested these values against the finishing times for the local runners, those from the race state, and visitors, those from other locations. Effects of local acclimation could be evaluated by comparing finishing times of local runners to the change between the race day and baseline weather conditions. Locals experienced a significant impact on finishing times for large changes between race day and the baseline conditions for humidity variables, dew point temperature, vapor pressure, relative humidity, and temperature based variables such as the heat index, temperature and the saturation vapor pressure. Wind speed and pressure values also marked a change in performance, however; pressure was determined to be a larger psychological factor than acclimation factor. The locals also demonstrated an acclimation effect as performance improved when conditions were similar on race day to baseline conditions for the three larger races. Humidity variables had the largest impact on runners when those values increased from training and acclimation values; however increased wind speed appeared to offset increased humidity values. These findings support previous acclimation research stating warm wet conditions are more difficult to acclimate to than warm dry conditions. This research while primarily pertaining to those participating physically demanding activities may also be applied to other large scale events such as festivals, fairs, or concerts.
ContributorsDeBiasse, Kimberly Michelle (Author) / Cerveny, Randall S. (Thesis advisor) / Brazel, Anthony (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2011
161500-Thumbnail Image.png
Description
The southwestern United States is an ecologically, climatologically, and topographically diverse geographical region. As a result, it has been difficult to develop accurate assessments and instructional pedagogy for defining and demonstrating climate sensitivity and change at a more local level. To address this problem, this dissertation is divided into two

The southwestern United States is an ecologically, climatologically, and topographically diverse geographical region. As a result, it has been difficult to develop accurate assessments and instructional pedagogy for defining and demonstrating climate sensitivity and change at a more local level. To address this problem, this dissertation is divided into two distinct sections involving climate data collection/analysis and geography education using interactive geovisualization video games (iGEOs). The first two papers analyze new climate observations in Joshua Tree National Park. The first paper examines the variability in accuracy of climate reanalysis and interpolation methods compared to field observations in Joshua Tree National Park and the Tucson Metropolitan Area. This study found that other than PRISM interpolation data, reanalysis techniques performed better in a region with a more extensive climate network. The second paper developed a climate regionalization zone separating the Mojave and Sonoran Deserts within Joshua Tree National Park using principal component analysis. This study used monthly temperature and precipitation observations, as well as seasonal climate trends. The final two papers describe and analyze the implementation of virtual interactive geovisualization video games (iGEOs) used to instruct geographical concepts in an introductory physical geography course at Arizona State University. The first paper examines the preliminary implementation of an iGEO in the San Francisco Peaks of northern Arizona, identifying student support for the games, but with caveats related to the technical shortcomings of the game design, and noticeable differences based on academic major. The second paper examines the changing experiences and challenges encountered by both students and instructors in an iGEO centered introductory geography course during the COVID-19 pandemic. This study found that, while students were impacted by the pandemic, all student groups had sufficient extensive and intensive learning materials to ensure a positive and successful lab experience. Overall, the significance of these four papers demonstrates that new applications of climate observations and geography pedagogy can effectively describe local climate sensitivity and instruct geographic concepts in the mountainous Southwest.
ContributorsHeintzman, Ryan Joseph (Author) / Cerveny, Randall S (Thesis advisor) / Dorn, Ronald I (Thesis advisor) / Balling Jr, Robert C (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2021