Matching Items (5)
Filtering by

Clear all filters

154747-Thumbnail Image.png
Description
Text Classification is a rapidly evolving area of Data Mining while Requirements Engineering is a less-explored area of Software Engineering which deals the process of defining, documenting and maintaining a software system's requirements. When researchers decided to blend these two streams in, there was research on automating the process of

Text Classification is a rapidly evolving area of Data Mining while Requirements Engineering is a less-explored area of Software Engineering which deals the process of defining, documenting and maintaining a software system's requirements. When researchers decided to blend these two streams in, there was research on automating the process of classification of software requirements statements into categories easily comprehensible for developers for faster development and delivery, which till now was mostly done manually by software engineers - indeed a tedious job. However, most of the research was focused on classification of Non-functional requirements pertaining to intangible features such as security, reliability, quality and so on. It is indeed a challenging task to automatically classify functional requirements, those pertaining to how the system will function, especially those belonging to different and large enterprise systems. This requires exploitation of text mining capabilities. This thesis aims to investigate results of text classification applied on functional software requirements by creating a framework in R and making use of algorithms and techniques like k-nearest neighbors, support vector machine, and many others like boosting, bagging, maximum entropy, neural networks and random forests in an ensemble approach. The study was conducted by collecting and visualizing relevant enterprise data manually classified previously and subsequently used for training the model. Key components for training included frequency of terms in the documents and the level of cleanliness of data. The model was applied on test data and validated for analysis, by studying and comparing parameters like precision, recall and accuracy.
ContributorsSwadia, Japa (Author) / Ghazarian, Arbi (Thesis advisor) / Bansal, Srividya (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2016
154694-Thumbnail Image.png
Description
Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption.

To address these shortfalls this work defines model-independent semantics for

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption.

To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process.
ContributorsJonas, Michael (Author) / Gaffar, Ashraf (Thesis advisor) / Fainekos, Georgios (Committee member) / Doupe, Adam (Committee member) / Herley, Cormac (Committee member) / Arizona State University (Publisher)
Created2016
155511-Thumbnail Image.png
Description
The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative

The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative text remains untapped due—in large part—to human limitations. The human ability to comprehend rich text and extract hidden meanings is far superior to known computational algorithms but remains unscalable. In this research, computational treatment is given to online news framing for exposing a deeper level of expressivity coined “double subjectivity” as characterized by its cumulative amplification effects. A visual language is offered for extracting spatial and temporal dynamics of double subjectivity that may give insight into social influence about critical issues, such as environmental, economic, or political discourse. This research offers benefits of 1) scalability for processing hidden meanings in big data and 2) visibility of the entire network dynamics over time and space to give users insight into the current status and future trends of mass communication.
ContributorsCheeks, Loretta H. (Author) / Gaffar, Ashraf (Thesis advisor) / Wald, Dara M (Committee member) / Ben Amor, Hani (Committee member) / Doupe, Adam (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2017
155205-Thumbnail Image.png
Description
When software design teams attempt to collaborate on different design docu-

ments they suffer from a serious collaboration problem. Designers collaborate either in person or remotely. In person collaboration is expensive but effective. Remote collaboration is inexpensive but inefficient. In, order to gain the most benefit from collaboration there needs to

When software design teams attempt to collaborate on different design docu-

ments they suffer from a serious collaboration problem. Designers collaborate either in person or remotely. In person collaboration is expensive but effective. Remote collaboration is inexpensive but inefficient. In, order to gain the most benefit from collaboration there needs to be remote collaboration that is not only cheap but also as efficient as physical collaboration.

Remotely collaborating on software design relies on general tools such as Word, and Excel. These tools are then shared in an inefficient manner by using either email, cloud based file locking tools, or something like google docs. Because these tools either increase the number of design building blocks, or limit the number

of available times in which one can work on a specific document, they drastically decrease productivity.

This thesis outlines a new methodology to increase design productivity, accom- plished by providing design specific collaboration. Using version control systems, this methodology allows for effective project collaboration between remotely lo- cated design teams. The methodology of this paper encompasses role management, policy management, and design artifact management, including nonfunctional re- quirements. Version control can be used for different design products, improving communication and productivity amongst design teams. This thesis outlines this methodology and then outlines a proof of concept tool that embodies the core of these principles.
ContributorsPike, Shawn (Author) / Gaffar, Ashraf (Thesis advisor) / Lindquist, Timothy (Committee member) / Whitehouse, Richard (Committee member) / Arizona State University (Publisher)
Created2016
154330-Thumbnail Image.png
Description
A well-defined Software Complexity Theory which captures the Cognitive means of algorithmic information comprehension is needed in the domain of cognitive informatics & computing. The existing complexity heuristics are vague and empirical. Industrial software is a combination of algorithms implemented. However, it would be wrong to conclude that algorithmic space

A well-defined Software Complexity Theory which captures the Cognitive means of algorithmic information comprehension is needed in the domain of cognitive informatics & computing. The existing complexity heuristics are vague and empirical. Industrial software is a combination of algorithms implemented. However, it would be wrong to conclude that algorithmic space and time complexity is software complexity. An algorithm with multiple lines of pseudocode might sometimes be simpler to understand that the one with fewer lines. So, it is crucial to determine the Algorithmic Understandability for an algorithm, in order to better understand Software Complexity. This work deals with understanding Software Complexity from a cognitive angle. Also, it is vital to compute the effect of reducing cognitive complexity. The work aims to prove three important statements. The first being, that, while algorithmic complexity is a part of software complexity, software complexity does not solely and entirely mean algorithmic Complexity. Second, the work intends to bring to light the importance of cognitive understandability of algorithms. Third, is about the impact, reducing Cognitive Complexity, would have on Software Design and Development.
ContributorsMannava, Manasa Priyamvada (Author) / Ghazarian, Arbi (Thesis advisor) / Gaffar, Ashraf (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2016