Matching Items (4)
Filtering by

Clear all filters

141150-Thumbnail Image.png
Description

Arizona State University is embracing new ways of thinking about how open stacks can make books active objects of engagement for a new generation of students, rather than risk becoming mere backdrops for study spaces. By taking a deliberate design approach to answering the question of which books and where,

Arizona State University is embracing new ways of thinking about how open stacks can make books active objects of engagement for a new generation of students, rather than risk becoming mere backdrops for study spaces. By taking a deliberate design approach to answering the question of which books and where, ASU Library seeks to position print collections as an engagement mechanism. This chapter presents the transformative potential of open stacks, along with planning for access, assessment and inclusive engagement. The authors describe how ASU Library is using a major library renovation project as a catalyst to explore these ideas, and propose a pathway to developing shared solutions for more effective use of library collections.

ContributorsMcAllister, Lorrie (Author) / Laster, Shari (Author) / Meyer, Lars (Editor)
Created2018
160097-Thumbnail Image.png
Description

Arizona State University (ASU) is known for both enormous size and scale, as well as excellence in research and innovation. These attributes are embodied in the ideal of the “New American University.” ASU Library, as a partner in the New American University, has reorganized itself, completed a large-scale renovation of

Arizona State University (ASU) is known for both enormous size and scale, as well as excellence in research and innovation. These attributes are embodied in the ideal of the “New American University.” ASU Library, as a partner in the New American University, has reorganized itself, completed a large-scale renovation of its main library building, and created interdisciplinary divisions of librarians and other professionals, backed up by subject “knowledge teams” that address specific research needs of faculty and students. As a result, the library has become involved in nontraditional projects across the university. This article is useful for libraries seeking to remain relevant and align themselves with institutional priorities.

ContributorsLeaming Malecki, Allison (Author) / Edens, Wes (Author) / Bonanni, Mimmo (Author) / Doan, Tomalee (Author)
127808-Thumbnail Image.png
Description

Students in Organic Chemistry for Majors were required to write a paper as the culminating course assignment. Prior to completing this assignment, students could attend a library instruction session covering relevant databases and resources. Upon submission of their papers, bibliographies from 53 students were collected. Calculations were made to attempt

Students in Organic Chemistry for Majors were required to write a paper as the culminating course assignment. Prior to completing this assignment, students could attend a library instruction session covering relevant databases and resources. Upon submission of their papers, bibliographies from 53 students were collected. Calculations were made to attempt a holistic account of costs associated with completing the assignment. Factors such as the cost of journals, databases, and librarian time were all included in the overall cost estimate, totalling $7,189.22 for this single assignment.

ContributorsKromer, John (Author)
Created2019-07-02
128975-Thumbnail Image.png
Description

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move a step beyond detection and into the relative quantification of Cys-SOH within specific proteins found in a complex biological setting--namely, human plasma.

Results: This report describes the possibilities and limitations of performing such analyses based on the use of thionitrobenzoic acid and dimedone-based probes which are commonly employed to trap Cys-SOH. Results obtained by electrospray ionization-based mass spectrometric immunoassay reveal the optimal type of probe for such analyses as well as the reproducible relative quantification of Cys-SOH within albumin and transthyretin extracted from human plasma--the latter as a protein previously unknown to be modified by Cys-SOH.

Conclusions: The relative quantification of Cys-SOH within specific proteins in a complex biological setting can be accomplished, but several analytical precautions related to trapping, detecting, and quantifying Cys-SOH must be taken into account prior to pursuing its study in such matrices.

ContributorsRehder, Douglas (Author) / Borges, Chad (Author) / Biodesign Institute (Contributor)
Created2010-07-01