Matching Items (21)
Filtering by

Clear all filters

Description

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and time effectiveness. Theoretical data for the time to 60% drug release and the slope and intercept of the log-log plot were collected and subjected to statistical analysis in JMP. Since the scope of this project focuses on microparticle surface degradation drug release with no drug diffusion, the characteristic variables relating to the slope (n = diffusional release exponent) and the intercept (k = kinetic constant) do not directly apply to the distribution model within the scope of the research. However, these variables are useful for analysis when the Mathcad template is applied to other types of drug release models.

ContributorsHan, Priscilla (Author) / Vernon, Brent (Thesis director) / Nickle, Jacob (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135551-Thumbnail Image.png
Description
In this study, the packaging and labeling of milk and coffee was compared between Walmart and Sprouts. The pricing, the sourcing, the certifications and the overall shelf presence of the items was taken under consideration. After studying the packaging of both, a new design incorporating the applicable labels, customer appeal

In this study, the packaging and labeling of milk and coffee was compared between Walmart and Sprouts. The pricing, the sourcing, the certifications and the overall shelf presence of the items was taken under consideration. After studying the packaging of both, a new design incorporating the applicable labels, customer appeal and appropriate green marketing was created for both the commodities.
ContributorsBhatt, Rashi Hitesh (Author) / Collins, Shari (Thesis director) / Keahey, Jennifer (Committee member) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135557-Thumbnail Image.png
Description
ASU's international student population has been growing exponentially in the last few years. Specifically, the fastest growing group has been international students from China. However, many of these students are arriving with inaccurate expectations of life at an American university. Furthermore, prospective students in China that have a desire to

ASU's international student population has been growing exponentially in the last few years. Specifically, the fastest growing group has been international students from China. However, many of these students are arriving with inaccurate expectations of life at an American university. Furthermore, prospective students in China that have a desire to attend school in the U.S. are struggling to find a university that is affordable and respected. There is a huge opportunity for ASU to reach this market of students and increase their enrollment of international Chinese students. Our project aimed to create advertisements of ASU that target international Chinese students and their parents. The purpose of our project is to provide inspiration that ASU can utilize to create a professional marketing campaign to target this population of potential students.
ContributorsKagiyama, Kristen (Co-author) / Le, Alethea (Co-author) / Chien, Hsui Fen (Thesis director) / Chau, Angie (Committee member) / W. P. Carey School of Business (Contributor) / Department of Marketing (Contributor) / Department of Supply Chain Management (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135576-Thumbnail Image.png
Description
Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac

Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac tissue constructs have suffered from electrically insulated matrices and low cell retention. To address these drawbacks, we fabricated micropatterned hybrid hydrogel constructs (uniaxial microgrooves with 50 µm with) using a photocrosslinkable gelatin methacrylate (GelMA) hydrogel incorporated with gold nanorods (GNRs). The electrical impedance results revealed a lower impedance in the GelMA-GNR constructs versus the pure GelMA constructs. Superior electrical conductivity of GelMA-GNR hydrogels (due to incorporation of GNRs) enabled the hybrid tissue constructs to be externally stimulated using a pulse generator. Furthermore, GelMA-GNR tissue hydrogels were tested to investigate the biological characteristics of cultured cardiomyocytes. The F-actin fiber analysis results (area coverage and alignment indices) revealed higher directed (uniaxial) cytoskeleton organization of cardiac cells cultured on the GelMA-GNR hydrogel constructs in comparison to pure GelMA. Considerable increase in the coverage area of cardiac-specific markers (sarcomeric α-actinin and connexin 43) were observed on the GelMA-GNR hybrid constructs compared to pure GelMA hydrogels. Despite substantial dissimilarities in cell organization, both pure GelMA and hybrid GelMA-GNR hydrogel constructs provided a suitable microenvironment for synchronous beating of cardiomyocytes.
ContributorsMoore, Nathan Allen (Author) / Nikkhah, Mehdi (Thesis director) / Smith, Barbara (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135804-Thumbnail Image.png
Description
Arizona State University students are currently out of the loop when it comes to hearing about events being held in their community. This is because there is no established service that provides an inclusive list of both on and near campus events. What's worse is that the current methods for

Arizona State University students are currently out of the loop when it comes to hearing about events being held in their community. This is because there is no established service that provides an inclusive list of both on and near campus events. What's worse is that the current methods for event marketing rely heavily on who one knows. Currently, ASU students hear about events through word of mouth, email chains, Facebook pages, and posters around campus. Thankfully, there is now an event marketing method that is available to everyone. UniEvents is a newly developed event service that live-tracks events around ASU's Tempe campus. UniEvents consists of a webpage that accommodates all screen sizes and is accessible by all devices including smartphones, tablets, and desktop computers. The website offers a user-friendly interface and useful features. Students are able to scan through event listings on a calendar or they can use an interactive map to find events nearest to them. Furthermore, UniEvents also offers the option for users to submit events to be advertised through the service. This way, students and organizations can easily spread the word about events on campus. Through UniEvents, ASU students will finally be able to see a conclusive list of upcoming events in one convenient site. Students will be able to save time and hassle by not having to rely on numerous sources to learn about events. UniEvents is committed to help students learn about events and get involved in campus activities!
ContributorsDeegan, Taylor (Co-author) / Nguyen, Lilian (Co-author) / Ostrom, Lonnie (Thesis director) / Schlacter, John (Committee member) / Harrington Bioengineering Program (Contributor) / Economics Program in CLAS (Contributor) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136945-Thumbnail Image.png
Description
This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often

This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often cited as one of the most important statistics when making budget decisions. Many academic programs are ill-equipped to perform this task, however, as their personnel are not trained as recruiters, but rather as professors and industry professionals; furthermore, the university-level recruitment staff faces the impossible task of advertising every department's recruitment message. The Del E. Webb School of Construction has embarked upon a journey to create industry-based marketing materials to aid them in their recruitment efforts. Construction management (CM) has traditionally been viewed as a technology major relegated to vocational students and those not fit for baccalaureate programs. In recent years that perception has changed, however, as the industry has become increasingly complex and CM programs actively work to recruit students. In an attempt to increase that recruitment, the Del E. Webb School has created marketing materials that are signature to the program featuring the world's most widely-used building material, concrete, to create a keepsake for prospective students. This keepsake comes in the form of concrete replicas of the new ASU Pitchfork logo. These pitchforks are small and designed to be mass produced so that they can be handed out at recruitment events either on campus or in local schools. The Del E. Webb School had previously experimented with flexible rubber molds and flowable mixtures, such that the models could be easily cast and rapidly demolded and reset for casting. There were issues, however, as those pitchforks did not meet desired level of quality and were difficult to reproduce. This thesis thus describes an experimental program examining different casting and demolding regimens in an attempt to find the optimal way to create the pitchforks on a consistent basis. Following this, an operations manual for how to create the pitchforks was created in order to ensure that successive cohorts of construction students can reproduce the pitchforks in preparation for the School's annual recruitment events.
ContributorsErnzen, John Alexander (Author) / Wiezel, Avi (Thesis director) / Rogers, James (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136573-Thumbnail Image.png
Description
Sustainability has been a growing topic since the 1970’s, but is truly taking shape today as society is beginning to understand the necessity of protecting our environment. Business organizations are following this ‘megatrend’ and are beginning to incorporate sustainable initiatives in their organizations from the inside out. The sports industry

Sustainability has been a growing topic since the 1970’s, but is truly taking shape today as society is beginning to understand the necessity of protecting our environment. Business organizations are following this ‘megatrend’ and are beginning to incorporate sustainable initiatives in their organizations from the inside out. The sports industry is no exception as they are extremely influential over the millions of fans that follow them, whom have a strong affiliation with their favorite team. The Arizona Diamondbacks understand this responsibility and seek to be a leader in their community by creating many sustainable initiatives within their organization and community. The current problem the organization faces, is that much of the community are not aware of their environmental commitment. This is in part due to a lack of marketing within the organization and to the Arizona valley. This project analyzes the sports industry’s commitment to sustainability and how the Arizona Diamondbacks compare to industry leaders. Included is a detailed marketing plan for the organization comprised of current initiatives and of new initiatives that the Diamondbacks could potentially carry out. The implementation of this proposal could deem extremely beneficial as it would strengthen their identity, unify their employees and engage fans, which will make them feel a deeper affiliation with the organization. The Diamondbacks have made a commitment to the environment, but it is time to deepen that commitment, set an example for people in the Valley and in turn, spark social change.
ContributorsBauman, Jillian (Co-author) / Hopson, Emma (Co-author) / Eaton, John (Thesis director) / Kutz, Elana (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor) / Department of Marketing (Contributor) / School of Sustainability (Contributor)
Created2015-05
131635-Thumbnail Image.png
Description
There is an increasing interest in developing thermo-responsive polymers for treating aneurysms. In this thesis project, the potential for poly(NIPAAm-co-JAAm-co-HEMA-Acrylate) (PNJHAc) as a treatment method for brain aneurysms was investigated. Five different batches of polymer were synthesized, purified, lyophilized, and characterized using nuclear magnetic resonance and cloud point techniques over

There is an increasing interest in developing thermo-responsive polymers for treating aneurysms. In this thesis project, the potential for poly(NIPAAm-co-JAAm-co-HEMA-Acrylate) (PNJHAc) as a treatment method for brain aneurysms was investigated. Five different batches of polymer were synthesized, purified, lyophilized, and characterized using nuclear magnetic resonance and cloud point techniques over the course of several months. Two were tested in aneurysm models. Of these five batches, there were two that showed promise as liquid embolic agents for endovascular embolization.
ContributorsLoui, Michelle (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133148-Thumbnail Image.png
Description
At Arizona State University (ASU), there is a perceived lack of interdisciplinary symposiums for student presenters and a lack of understanding about the university's "#1 in Innovation" title awarded by U.S. News & World report. In addition, ASU focuses on advertising innovation in a few select fields, such as astronomy

At Arizona State University (ASU), there is a perceived lack of interdisciplinary symposiums for student presenters and a lack of understanding about the university's "#1 in Innovation" title awarded by U.S. News & World report. In addition, ASU focuses on advertising innovation in a few select fields, such as astronomy and space exploration. To address these issues, a team of Lincoln Undergraduate Scholars planned an Ethics & Innovation Symposium with the theme of "Defining Our Future" for April 11, 2018. I chose to conduct a post-event analysis of logistics, successes, and failures. This additional evaluation was meant to serve as a measure of the symposium's sustainability for future years. This thesis addresses the methods of event planning (incl. marketing, gathering student presenters, catering, room reservation), results, and analysis of outcomes specifically for the Ethics & Innovation Symposium. Overall, the thesis document will benefit anyone interested in planning some event at the university level. Additional reference documents are included in this report to provide help with creating a general checklist, developing marketing deliverables, and contacting university departments/organizations.
ContributorsJagadish, Ishitha (Author) / Coursen, Jerry (Thesis director) / Kenney, Sean (Committee member) / O'Neil, Erica (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133847-Thumbnail Image.png
Description
With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.
ContributorsUwiringiyimana, Mahoro Marie Chantal (Author) / Vernon, Brent (Thesis director) / Nikkhah, Mehdi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05