Matching Items (4)
Filtering by

Clear all filters

171705-Thumbnail Image.png
Description
Cancer is a disease of multicellularity, with deep evolutionary origins. As such, the forces of both evolution and natural selection operate on multiple scales to govern tumor dynamics. As multicellular organisms increase in complexity, cellular-level fitness must be controlled in order to maintain organismal-level fitness. Mutations that might provide a

Cancer is a disease of multicellularity, with deep evolutionary origins. As such, the forces of both evolution and natural selection operate on multiple scales to govern tumor dynamics. As multicellular organisms increase in complexity, cellular-level fitness must be controlled in order to maintain organismal-level fitness. Mutations that might provide a benefit at the cellular level by allowing for rapid proliferation are subject to the same forces that function on the organismal level, wherein cancer suppression is a benefit – especially as organisms increase their body size and lifespan. In order to maintain these large cellular bodies and long lifespans, organisms must increase their means of cancer suppression, and it is likely that these two phenomena co-evolved together. On a smaller scale, the cooperative dynamics of circulating tumor cell (CTC) clusters engage in cooperation to form networks of connected single cells that provide protection, stability, and cooperative sharing of resources to enhance their survival as they detach from a primary tumor and metastasize at secondary sites. This work seeks to explore the phenomenon of multi-level selection in neoplastic disease by examining A) the mechanisms of cancer suppression at multiple scales, B) the ecological resilience and stability of cooperating cellular clusters and C) a large-scale dataset on cancer prevalence across mammals, sauropsids (birds and reptiles), and amphibians, illuminating the evolutionary life history characteristics that explain the tradeoffs between cancer suppression and overall organism fitness. By taking an ecological and evolutionary approach to understanding cancer, novel strategies of cancer treatment may be discovered alongside fundamental discoveries about the fundamental forces of selection that govern evolutionary dynamics from the cellular to the organismal scale.
ContributorsHarris, Valerie (Author) / Maley, Carlo C. (Thesis advisor) / Aktipis, Athena (Committee member) / Boddy, Amy M. (Committee member) / Compton, Carolyn (Committee member) / Arizona State University (Publisher)
Created2022
187791-Thumbnail Image.png
Description
The purpose of this paper is to create awareness around breast cancer risk factorsand screening methods. Five overarching intrinsic risk factors, including: the patient’s age at the time of diagnosis, race, familial susceptibility, and the role of natural hormone changes, and one extrinsic risk factor, dietary habits, were selected for consideration. Along with

The purpose of this paper is to create awareness around breast cancer risk factorsand screening methods. Five overarching intrinsic risk factors, including: the patient’s age at the time of diagnosis, race, familial susceptibility, and the role of natural hormone changes, and one extrinsic risk factor, dietary habits, were selected for consideration. Along with risk factors, four screening methods were taken into consideration. These included self-breast exams, mammograms, magnetic resonance imaging (MRI), and ultrasound. The recommendation of screening methods was then determined in relation to a women’s risk for breast cancer. Two categories of risk (average and high risk) were defined and the recommended screening methods were determined based on the risk. Overall, mammography was found to be a useful tool in both average and high risk women. For high risk women, mammography with MRI had a greater sensitivity and was able to detect more breast cancers. More research needs to be conducted on the efficacy of Breast MRI, Ultrasound, and breast self-exams as supplemental tools to mammography in both average and high-risk women
ContributorsTodd, Julia M (Author) / Compton, Carolyn (Thesis advisor) / Pepin, Susan (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2023
187448-Thumbnail Image.png
Description
Evolutionary theory provides a rich framework for understanding cancer dynamics across scales of biological organization. The field of cancer evolution has largely been divided into two domains, comparative oncology - the study of cancer across the tree of life, and tumor evolution. This work provides a theoretical framework to unify

Evolutionary theory provides a rich framework for understanding cancer dynamics across scales of biological organization. The field of cancer evolution has largely been divided into two domains, comparative oncology - the study of cancer across the tree of life, and tumor evolution. This work provides a theoretical framework to unify these subfields with the intent that an understanding of the evolutionary dynamics driving cancer risk at one scale can inform the understanding of the dynamics on another scale. The evolution of multicellular life and the unique vulnerabilities in the cellular mechanisms that underpin it explain the ubiquity of cancer prevalence across the tree of life. The breakdown in cellular cooperation and communication that were required for multicellular life define the hallmarks of cancer. As divergent life histories drove speciation events, it similarly drove divergences in fundamental cancer risk across species. An understanding of the impact that species’ life history theory has on the underlying network of multicellular cooperation and somatic evolution allows for robust predictions on cross-species cancer risk. A large-scale veterinary cancer database is utilized to validate many of the predictions on cancer risk made from life history evolution. Changing scales to the cellular level, it lays predictions on the fate of somatic mutations and the fitness benefits they confer to neoplastic cells compared to their healthy counterparts. The cancer hallmarks, far more than just a way to unify the many seemingly unique pathologies defined as cancer, is a powerful toolset to understand how specific mutations may change the fitness of somatic cells throughout carcinogenesis and tumor progression. Alongside highlighting the significant advances in evolutionary approaches to cancer across scales, this work provides a lucid confirmation that an understanding of both scales provides the most complete portrait of evolutionary cancer dynamics.
ContributorsCompton, Zachary Taylor (Author) / Maley, Carlo C. (Thesis advisor) / Aktipis, Athena (Committee member) / Buetow, Kenneth (Committee member) / Nedelcu, Aurora (Committee member) / Compton, Carolyn (Committee member) / Arizona State University (Publisher)
Created2023
161050-Thumbnail Image.png
Description

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of neoplastic diseases, such as cancer. Cooperative cellular phenotypes are straightforward

Cooperative cellular phenotypes are universal across multicellular life. Division of labor, regulated proliferation, and controlled cell death are essential in the maintenance of a multicellular body. Breakdowns in these cooperative phenotypes are foundational in understanding the initiation and progression of neoplastic diseases, such as cancer. Cooperative cellular phenotypes are straightforward to characterize in extant species but the selective pressures that drove their emergence at the transition(s) to multicellularity have yet to be fully characterized. Here we seek to understand how a dynamic environment shaped the emergence of two mechanisms of regulated cell survival: apoptosis and senescence. We developed an agent-based model to test the time to extinction or stability in each of these phenotypes across three levels of stochastic environments.

ContributorsDanesh, Dafna (Author) / Maley, Carlo (Thesis director) / Aktipis, Athena (Committee member) / Compton, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2021-12