Matching Items (434)
Filtering by

Clear all filters

Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
Description
As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.
ContributorsOvermann, William (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Taylor, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
156839-Thumbnail Image.png
Description
Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the

Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the form factor of a UK metric brick sized at 215 mm × 102.5 mm × 65 mm for the experimental power output using a copper/copper(II) (Cu/Cu2+) based aqueous electrode. In this study the thermogalvanic brick uses a 0.7 M CuSO4 + 0.1 M H2SO4 aqueous electrolyte with copper electrodes as two of the walls. The other walls of the thermogalvanic brick are made of 5.588 mm (0.22 in) thick acrylic sheet. Internal to the brick, a 0.2 volume fraction minimal surface Schwartz diamond (Schwartz D) structure made of ABS, Polycarbonate-ABS (PCABS), and Polycarbonate-Carbon Fiber (PCCF) was tested to see the effects on the power output of the thermogalvanic brick. By changing the size of the thermogalvanic cell into that of a brick will allow this thermogalvanic cell to become the literal building blocks of green buildings. The thermogalvanic brick was tested by applying a constant power to the strip heater attached to the hot side of the brick, resulting in various ∆T values between 8◦C and 15◦C depending on the material of Schwartz D inside. From this, it was found that a single Cu/Cu2+ thermogalvanic brick containing the PCCF or PCABS Schwartz D performed equivalently well at a 163.8% or 164.9%, respectively, higher normalized power density output than the control brick containing only electrolyte solution.
ContributorsLee, William J. (Author) / Phelan, Patrick (Thesis advisor) / El Asmar, Mounir (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2018
133343-Thumbnail Image.png
Description
This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider

This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider segmentation and the products and platforms that best target them in order to maximize revenue. A survey was performed with a sample size of 314 participants to find out consumer behavior and preference as well as producer situation. Consumers come from both the United States and abroad. Customers come directly and almost exclusively from followers. Therefore, increasing the number of followers on Instagram is essential to increasing revenue. Jennifer has time, resource, and ability constraints, while the market has limited potential. The conclusion is that Jennifer should become more organized as a business. To grow her following, she should cater more towards the most popular fandoms (BTS), make art tutorials, consider collaborations, and better inform followers of her products/services available for purchase. The social media platforms key to marketing Jennifer's products are Instagram and Twitter. Other platforms to be used to increase exposure are Tumblr, Amino Apps, DeviantArt, Reddit, and YouTube. She must also declutter all of these virtual storefronts of unnecessary content to varying degrees in order to build ease of access and a trustworthy brand image. The best platforms for transaction is a personal store, RedBubble (a website that allows users to sell a variety of products with their uploaded images printed onto them), Patreon, and in-person at conventions.
ContributorsXu, Everest Christine (Author) / Eaton, Kathryn (Thesis director) / Ingram-Waters, Mary (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133346-Thumbnail Image.png
Description
The advertising agency, in its variety of forms, is one of the most powerful forces in the modern world. Its products are seen globally through various multimedia outlets and they strongly impact culture and economy. Since its conception in 1843 by Volney Palmer, the advertising agency has evolved into the

The advertising agency, in its variety of forms, is one of the most powerful forces in the modern world. Its products are seen globally through various multimedia outlets and they strongly impact culture and economy. Since its conception in 1843 by Volney Palmer, the advertising agency has evolved into the recognizable—and unrecognizable—firms scattered around the world today. In the United States alone, there are roughly 13.4 thousand agencies, many of which also have branches in other countries. The evolution of the modern advertising agency coincided with, and even preceded, some of the major inflection points in history. Understanding how and why changes in advertising agencies affected these inflection points provides a glimpse of understanding into the relationship between advertising, business, and societal values.

In the pages ahead we will explore the future of the advertising industry. We will analyze our research to uncover the underlying trends pointing towards what is to come and work to apply those explanations to our understanding of advertising in the future.
ContributorsHarris, Chase (Co-author) / Potthoff, Zachary (Co-author) / Gray, Nancy (Thesis director) / Samper, Adriana (Committee member) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
It is important for organizations and businesses to have some kind of online presence, as there are enormous benefits, including utilizing the power marketing tools to provide services for people. However, creating a website with a strong presence is difficult, in addition to ranking your website to be on to

It is important for organizations and businesses to have some kind of online presence, as there are enormous benefits, including utilizing the power marketing tools to provide services for people. However, creating a website with a strong presence is difficult, in addition to ranking your website to be on top of google. Thus, the goal of this project was to rank a website using several marketing tools to increase an organization’s search engine optimization (SEO) for the company, Artificial Grass Master.
ContributorsSanchez-Apodaca, Esperanza Angelica (Author) / Steve, Cho (Thesis director) / Cynthia, Reid (Committee member) / Tech Entrepreneurship & Mgmt (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131534-Thumbnail Image.png
Description
In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports

In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports promises of music industry sustainability based on increasing annual revenues in paid streaming services and artists’ high creative demand. The rate of new audio engineer entries in the sound recording subsection of the music industry is not viable to support streaming artists’ high demand to engineer new music recordings. Offering CTE programs in secondary education is rare for aspiring engineers with insufficient accessibility to pursue a post-secondary or vocational education because of financial and academic limitations. These aspiring engineers seek alternatives for receiving an informal education in audio engineering on the Internet using video sharing services like YouTube to search for tutorials and improve their engineering skills. The shortage of accessible educational materials on the Internet restricts engineers from advancing their own audio engineering education, reducing opportunities to enter a desperate job market in need of independent, home studio-based engineers. Content creators on YouTube take advantage of this situation and commercialize their own video tutorial series for free and selling paid subscriptions to exclusive content. This is misleading for newer engineers because these tutorials omit important understandings of fundamental engineering concepts. Instead, content creators teach inflexible engineering methodologies that are mostly beneficial to their own way of thinking. Content creators do not often assess the incompatibility of teaching their own methodologies to potential entrants in a profession that demands critical thinking skills requiring applied fundamental audio engineering concepts and techniques. This project analyzes potential solutions to resolve the deficiencies in online audio engineering education and experiments with structuring simple, deliverable, accessible educational content and materials to new entries in audio engineering. Designing clear, easy to follow material to these new entries in audio engineering is essential for developing a strong understanding for the application of fundamental concepts in future engineers’ careers. Approaches to creating and designing educational content requires translating complex engineering concepts through simplified mediums that reduce limitations in learning for future audio engineers.
ContributorsBurns, Triston Connor (Author) / Tobias, Evan (Thesis director) / Libman, Jeff (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05