Matching Items (379)
Filtering by

Clear all filters

Description
The Patient Guidance Project was created by a team of research assistants in the Arizona Cancer Evolution Center as a source of supplemental education and support for recently diagnosed cancer patients. Extensive background research in the form of literature reviews highlighted disparities between the information patients want and are receiving,

The Patient Guidance Project was created by a team of research assistants in the Arizona Cancer Evolution Center as a source of supplemental education and support for recently diagnosed cancer patients. Extensive background research in the form of literature reviews highlighted disparities between the information patients want and are receiving, as well as between average literacy levels of patients and the literacy levels at which cancer information is commonly provided. The Patient Guidance Project has published comprehensive guides for specific types of cancer, which so far include metastatic melanoma, glioblastoma, prostate cancer, oral cancer, kidney cancer, breast cancer, and colorectal cancer. The content of the guides is intended to bridge the gaps in information for patients with an emphasis on treatment options, treatment side effects, and psychological support resources, which surveys have identified as the topics patients want information on most. Written at a sixth-grade literacy level, which over half of adults in the U.S. read at, the guides are meant to be of benefit to as many people as possible. In the future, the team hopes to expand the Patient Guidance Project to include more cancer types, guides in different languages, and multimodal features to increase their effectiveness.
ContributorsWilliams, Erica (Author) / Maley, Carlo (Thesis director) / Baciu, Cristina (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-12
Description
Cancer is an ever-relevant disease with many genetic, social, environmental, and behavioral risk factors. One factor which has been garnering interest is the impact of nutrition on cancer. As a disease process, cancer is primarily driven by an accumulation of genetic aberrations. Recent epidemiological, pre-clinical, and clinical studies have demonstrated

Cancer is an ever-relevant disease with many genetic, social, environmental, and behavioral risk factors. One factor which has been garnering interest is the impact of nutrition on cancer. As a disease process, cancer is primarily driven by an accumulation of genetic aberrations. Recent epidemiological, pre-clinical, and clinical studies have demonstrated various impacts of bioactive food molecules on the promotion or prevention of these oncogenic mutations. This work explores several of these molecules and their relation to cancer prevention and provides a sample meal plan, which highlights many additional molecules that are currently being studied.
ContributorsCurtin, Elise (Author) / Don, Rachael (Thesis director) / Compton, Carolyn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
166419-Thumbnail Image.png
Description

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome Proliferator-Activated Receptor/Fatty Acid Oxidation (PPAR/FAO) axis that senses and utilizes cellular lipids. However, the microbiome is a known regulator of lipid metabolism in the gut, but little is understood about how the gut commensals affect access to the lipids and alter stem cell function. Here, we use the long term HFD-fed mouse model to analyze the phenotypic changes in the intestinal stem cells (ISCs) after depletion of the gut microbiota. We find that the loss of the gut microbiome after four weeks of antibiotic treatment imposes significant changes in ISC function leading to reduced HFD ISC regenerative potential. These results indicate that the gut microbiome plays a crucial role in the lipid metabolic process which regulates and maintains the HFD ISC phenotype, and further suggests that the gut microbiome may augment the diet-induced tumor initiating capacity by altering the stem cell function.

ContributorsSantos Molina, Pablo (Author) / Mana, Miyeko (Thesis director) / Whisner, Corrie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
Description

This paper examines the physics behind cancer treatment and more specifically radiation therapy. A phenomenon known as Compton scattering has played a substantial role in the treatment of breast cancer and improvement of lives of women around the world. Through Compton scattering, radiation therapy has been tremendously improved and has

This paper examines the physics behind cancer treatment and more specifically radiation therapy. A phenomenon known as Compton scattering has played a substantial role in the treatment of breast cancer and improvement of lives of women around the world. Through Compton scattering, radiation therapy has been tremendously improved and has allowed for the most accurate and effective treatment in breast cancer patients today.

ContributorsRombaoa, Matthew Bryce (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description

The purpose of this thesis is to analyze the impacts of virtue signaling and tokenism within the cosmetic industry and how it relates to corporate social responsibility. Secondary research has been gathered and analyzed to find insight into how these aspects in marketing can impact the profits and other measures

The purpose of this thesis is to analyze the impacts of virtue signaling and tokenism within the cosmetic industry and how it relates to corporate social responsibility. Secondary research has been gathered and analyzed to find insight into how these aspects in marketing can impact the profits and other measures of success within business. This will lead to an understanding of how corporate social responsibility can be beneficial to the cosmetic industry, especially as companies grow and expand their target market. This thesis research is based on secondary research built from articles and advertisements. Additionally, research will be pulled from company statistics in profits and sales to determine success in different product launches and the marketing tactics utilized. After analyzing these differences and the types of advertisements that lead to the most successful results, it can be determined that virtue signaling and racial/ethnic tokenism can hinder success potential and thus, in contrast, companies that adhere to the ethical implications within corporate social responsibility will benefit from a reputation of sincerity.

ContributorsJohnson, Nicole (Author) / Hale, Allison (Co-author) / Voustas, Konstandinos (Thesis director) / Riker, Elise (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
165291-Thumbnail Image.png
Description

My research aimed to examine the marketing strategy of the popular K-Pop group BTS and how they've managed to globalize their music over the past few years. The analysis focuses on the 7 P's of marketing, and how their strategy has evolved over time. My research is in the form

My research aimed to examine the marketing strategy of the popular K-Pop group BTS and how they've managed to globalize their music over the past few years. The analysis focuses on the 7 P's of marketing, and how their strategy has evolved over time. My research is in the form of a video and serves as a creative documentary analyzing their marketing strategy. The link to the creative project can be found in the appendix of the research paper.

ContributorsHinojosa, Serena (Author) / Dong, Xiaodan (Thesis director) / Lisjak, Monika (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor)
Created2022-05
Description
This thesis paper outlines Nova-six company, an honors thesis project conducted through the Founders Lab program at Arizona State University. Nova-six is a multimedia company centered around the space industry. Nova-six’s mission is to ignite Generation Z’s passion for space by reimagining it through the lens of contemporary culture. To

This thesis paper outlines Nova-six company, an honors thesis project conducted through the Founders Lab program at Arizona State University. Nova-six is a multimedia company centered around the space industry. Nova-six’s mission is to ignite Generation Z’s passion for space by reimagining it through the lens of contemporary culture. To this end, Nova-six has developed its brand to be a space-themed streetwear, pop art, and entertainment venture. Through its innovative approach, Nova-six aims to transform the space industry's narrative, making it a central part of today's cultural conversations and inspiring a new generation to explore the final frontier.
ContributorsEverett, Ryan (Author) / Reynolds, TJ (Co-author) / Gomez, Dominic (Co-author) / Kovalcik, Richard (Co-author) / Guttilla, Joshua (Co-author) / Byrne, Jared (Thesis director) / Giles, Charles (Committee member) / Barrett, The Honors College (Contributor)
Created2024-05
Description
Modified Salmonella strains and recombinant DNA in a plasmid are used to construct a Salmonella strain that is dependent on the experimentally inserted plasmid. This construction will be done via lab techniques such as polymerase chain reactions (PCR), transformation, and other means to create this construction. With future successful construction, the inhibition

Modified Salmonella strains and recombinant DNA in a plasmid are used to construct a Salmonella strain that is dependent on the experimentally inserted plasmid. This construction will be done via lab techniques such as polymerase chain reactions (PCR), transformation, and other means to create this construction. With future successful construction, the inhibition of flagella assembly, within the tumor environment, and increased synthesis of flagellin will be possible. In the case that only assembly is prevented, then, the reliance on the lysis system to release flagellin into the tumor microenvironment will be used as a means to induce immune response. With the success of the self-lysis ability, these strains could be used to target these tumor cells to deliver anticancer material as a vaccine delivery system.
ContributorsShagi, Agnel (Author) / Kong, Wei (Thesis director) / Fu, Lingchen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2024-05
Description
Medulloblastoma is the most common pediatric brain cancer and accounts for 20% of all pediatric brain tumors. Upon diagnosis, patients undergo tumor-resection surgery followed by intense chemotherapy and cerebrospinal irradiation (CSI) regimens. CSI therapy is highly toxic and poorly tolerated in pediatric patients and is known to cause long-term neurocognitive,

Medulloblastoma is the most common pediatric brain cancer and accounts for 20% of all pediatric brain tumors. Upon diagnosis, patients undergo tumor-resection surgery followed by intense chemotherapy and cerebrospinal irradiation (CSI) regimens. CSI therapy is highly toxic and poorly tolerated in pediatric patients and is known to cause long-term neurocognitive, endocrine, and developmental deficits that often diminish the quality of life for medulloblastoma patients. The development of targeted therapies is necessary for both increasing the chance of survival and reducing treatment-related morbidities. A potential therapeutic target of interest in medulloblastoma is the polyamine biosynthesis pathway. Polyamines are metabolites present in every living organism and are essential for cellular processes such as growth, survival, and differentiation. Recent studies have shown that polyamine production is dysregulated in several cancers, including brain cancers, and have highlighted polyamine biosynthesis as a potential cancer growth dependency. Dysregulated polyamine metabolism has also been linked to several oncogenic drivers, including the WNT, SHH, and MYC signaling pathways that characterize genetically distinct medulloblastoma subgroups. One way to target polyamine biosynthesis is through the inhibition of the rate-limiting enzyme ornithine decarboxylase with difluoromethylornithine (DFMO), an analog of the polyamine precursor ornithine. DFMO is well-tolerated in pediatric populations and exerts minimal toxicities, as shown through neuroblastoma clinical trials, and is a therapy of interest for medulloblastoma. While DFMO has been tested clinically in multiple cancers, few in vitro studies have been performed to understand the exact mechanisms of anti-proliferation and cytotoxicity. Our study screened two immortalized medulloblastoma cell lines, DAOY (SHH) and D283 (non-WNT/non-SHH), and three patient-derived medulloblastoma cell lines, SL00024 (SHH), SL00668 (non-WNT/non-SHH), SL00870 (Unknown subgroup), for DFMO sensitivity and profiled the immortalized medulloblastoma cell line metabolome to understand the interactions between inhibition of polyamine metabolism with other essential metabolic processes and tumor cell growth. We found that medulloblastoma cell lines are sensitive to DFMO and the adaptive response to DFMO in medulloblastoma may be caused by increased oxidative stress and free radical scavenging. Our study hopes to inform the use of DFMO as an anti-cancer therapy in medulloblastoma by understanding the drug’s single-agent anti-proliferative mechanisms.
ContributorsFain, Caitlyn (Author) / Buetow, Kenneth (Thesis director) / Pirrotte, Patrick (Committee member) / Pathak, Khyati (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2024-05