Matching Items (2)
Filtering by

Clear all filters

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
149481-Thumbnail Image.png
Description
Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of service. At the same time, it is a complex task

Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of service. At the same time, it is a complex task due to the conflicting objectives and the uncertain nature of surgeries. In this dissertation, three different methodologies are developed to address OR planning and scheduling problem. First, a simulation-based framework is constructed to analyze the factors that affect the utilization of a catheterization lab and provide decision support for improving the efficiency of operations in a hospital with different priorities of patients. Both operational costs and patient satisfaction metrics are considered. Detailed parametric analysis is performed to provide generic recommendations. Overall it is found the 75th percentile of process duration is always on the efficient frontier and is a good compromise of both objectives. Next, the general OR planning and scheduling problem is formulated with a mixed integer program. The objectives include reducing staff overtime, OR idle time and patient waiting time, as well as satisfying surgeon preferences and regulating patient flow from OR to the Post Anesthesia Care Unit (PACU). Exact solutions are obtained using real data. Heuristics and a random keys genetic algorithm (RKGA) are used in the scheduling phase and compared with the optimal solutions. Interacting effects between planning and scheduling are also investigated. Lastly, a multi-objective simulation optimization approach is developed, which relaxes the deterministic assumption in the second study by integrating an optimization module of a RKGA implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to search for Pareto optimal solutions, and a simulation module to evaluate the performance of a given schedule. It is experimentally shown to be an effective technique for finding Pareto optimal solutions.
ContributorsLi, Qing (Author) / Fowler, John W (Thesis advisor) / Mohan, Srimathy (Thesis advisor) / Gopalakrishnan, Mohan (Committee member) / Askin, Ronald G. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2010