Matching Items (2)
Filtering by

Clear all filters

171973-Thumbnail Image.png
Description
Nebular emission-lines offer a powerful tool for studying the physical properties and chemical compositions of galaxies in the near and distant universe. They are excellent tracers of star formation activity in galaxies as well as efficient probes of intergalactic medium in the early universe. This dissertation presents findings from three

Nebular emission-lines offer a powerful tool for studying the physical properties and chemical compositions of galaxies in the near and distant universe. They are excellent tracers of star formation activity in galaxies as well as efficient probes of intergalactic medium in the early universe. This dissertation presents findings from three different studies of emission-line galaxies (a.k.a. line emitters) at low and high redshifts, based on imaging and spectroscopic observations. The first study explores Hα emitters at z ~ 0.6 from the Cosmic Deep And Wide Narrow-band (DAWN) survey, providing robust measurements of the Hα luminosity function (LF) and the star-formation rate density (SFRD) at z ~ 0.6. The effects of different dust-extinction corrections on the measured LF were also investigated in this study. Owing to the observing strategy employed in this survey, this study demonstrates the importance of performing deep and wide-field observations, in order to robustly constrain the entire LF. In the second study, 21 Lyman-α emitter (LAE) candidates at z ~ 7 from the Lyman-Alpha Galaxies in the Epoch of Reionization (LAGER) survey were followed up spectroscopically, using Low Resolution Imaging Spectrometer (LRIS) on the Keck telescope. 15 of these were confirmed to be LAEs, obtaining a spectroscopic confirmation success rate of ~ 80% for LAGER LAE candidates. Apart from Lyman- α, no other rest-frame ultra-violet (UV) nebular lines were detected, with a 2σ upper limit for the ratio of NV/Lyα ≲ 0.27. These confirmations help validate the neutral Hydrogen fraction estimates from LAGER, which is consistent with a fully ionized universe at z ~ 7. The final study investigated the presence of black hole/active galactic nuclei (AGN) signatures among Green Pea (GP) galaxies, using mid-infrared (MIR) observations from the Wide-field Infrared Survey Explorer (WISE) mission. 31 GPs were selected as candidate AGN based on a stringent MIR color-color diagnostic including two GPs exhibiting notable variability in the shorter two WISE bandpasses. Given that GPs are one of the best analogs of high-redshift galaxies, findings from this study suggest that AGN activity could be responsible for the hard ionizing radiation observed in some GPs, which has crucial implications on the sources likely to have contributed towards cosmic reionization.
ContributorsHarish, Santosh Mudigundam (Author) / Rhoads, James E. (Thesis advisor) / Jacobs, Daniel C. (Thesis advisor) / Malhotra, Sangeeta (Committee member) / Bowman, Judd (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2022
157989-Thumbnail Image.png
Description
Reionization is the phase transition of intergalactic atoms from being neutral to

becoming fully ionized. This process began ∼400 Myr after the Big Bang, when the first

stars and black holes began emitting ionizing radiation from stellar photospheres and

accretion disks. Reionization completed when all of the neutral matter between galaxies

became ionized ∼1

Reionization is the phase transition of intergalactic atoms from being neutral to

becoming fully ionized. This process began ∼400 Myr after the Big Bang, when the first

stars and black holes began emitting ionizing radiation from stellar photospheres and

accretion disks. Reionization completed when all of the neutral matter between galaxies

became ionized ∼1 Gyr after the Big Bang, and the Universe became transparent as

it is today.

Characteristics of the galaxies that drove reionization are mostly unknown. The

physical mechanisms that create ionizing radiation inside these galaxies, and the

paths for this light to escape are even more unclear. To date, only a small fraction of

the numerous searches for this escaping light have been able to detect a faint signal

from distant galaxies, and no consensus on how Reionization was completed has been

established.

In this dissertation, I discuss the evolution of the atomic matter between galaxies

from its initially ionized state, to its current re-ionized state, potential sources of

re-ionizing energy, and the theoretical and observational status of the characteristics of

these sources. I also present new constraints on what fraction of the ionizing radiation

escapes from galaxies using Hubble Space Telescope UV imaging, theoretical models

of the stellar and accretion disk radiation, and models of the absorption of ionizing

radiation by the intergalactic medium.
ContributorsSmith, Brent Matthew (Author) / Windhorst, Rogier A. (Thesis advisor) / Bowman, Judd (Committee member) / Borthakur, Sanchayeeta (Committee member) / Butler, Nathaniel (Committee member) / Mauskopf, Phillip (Committee member) / Arizona State University (Publisher)
Created2019