Matching Items (2)
168397-Thumbnail Image.png
Description
The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and reliability for the final system to be appealing from a

The development of portable electronic systems has been a fundamental factor to the emergence of new applications including ubiquitous smart devices, self-driving vehicles. Power-Management Integrated Circuits (PMICs) which are a key component of such systems must maintain high efficiency and reliability for the final system to be appealing from a size and cost perspective. As technology advances, such portable systems require high output currents at low voltages from their PMICs leading to thermal reliability concerns. The reliability and power integrity of PMICs in such systems also degrades when operated in harsh environments. This dissertation presents solutions to solve two such reliability problems.The first part of this work presents a scalable, daisy-chain solution to parallelize multiple low-dropout linear (LDO) regulators to increase the total output current at low voltages. This printed circuit board (PCB) friendly approach achieves output current sharing without the need for any off-chip active or passive components or matched PCB traces thus reducing the overall system cost. Fully integrated current sensing based on dynamic element matching eliminates the need for any off-chip current sensing components. A current sharing accuracy of 2.613% and 2.789% for output voltages of 3V and 1V respectively and an output current of 2A per LDO are measured for the parallel LDO system implemented in a 0.18μm process. Thermal images demonstrate that the parallel LDO system achieves thermal equilibrium and stable reliable operation. The remainder of the thesis deals with time-domain switching regulators for high-reliability applications. A time-domain based buck and boost controller with time as the processing variable is developed for use in harsh environments. The controller features adaptive on-time / off-time generation for quasi-constant switching frequency and a time-domain comparator to implement current-mode hysteretic control. A triple redundant bandgap reference is also developed to mitigate the effects of radiation. Measurement results are showcased for a buck and boost converter with a common controller IC implemented in a 0.18μm process and an external power stage. The converter achieves a peak efficiency of 92.22% as a buck for an output current of 5A and an output voltage of 5V. Similarly, the converter achieves an efficiency of 95.97% as a boost for an output current of 1.25A and an output voltage of 30.4V.
ContributorsTalele, Bhushan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Seo, Jae-Sun (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2021
157735-Thumbnail Image.png
Description
Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic time by identifying supernovae (SNe) and

gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling

GRBs and their afterglows to

Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic time by identifying supernovae (SNe) and

gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling

GRBs and their afterglows to probe the jets of GRBs can shed light on the emission

mechanism, rate, and energetics of these events.

In Chapter 1, I discuss the current state of astronomical transient study, including

sources of interest, instrumentation, and data reduction techniques, with a focus

on work in the infrared. In Chapter 2, I present original work published in the

Proceedings of the Astronomical Society of the Pacific, testing InGaAs infrared

detectors for astronomical use (Strausbaugh, Jackson, and Butler 2018); highlights of

this work include observing the exoplanet transit of HD189773B, and detecting the

nearby supernova SN2016adj with an InGaAs detector mounted on a small telescope

at ASU. In Chapter 3, I discuss my work on GRB jets published in the Astrophysical

Journal Letters, highlighting the interesting case of GRB 160625B (Strausbaugh et al.

2019), where I interpret a late-time bump in the GRB afterglow lightcurve as evidence

for a bright-edged jet. In Chapter 4, I present a look back at previous years of

RATIR (Re-ionization And Transient Infra-Red Camera) data, with an emphasis on

the efficiency of following up GRBs detected by the Fermi Space Telescope, before

some final remarks and brief discussion of future work in Chapter 5.
ContributorsStrausbaugh, Robert (Author) / Butler, Nathaniel (Thesis advisor) / Jansen, Rolf (Committee member) / Mauskopf, Phil (Committee member) / Windhorst, Rogier (Committee member) / Arizona State University (Publisher)
Created2019