Matching Items (6)

152753-Thumbnail Image.png

Spatiotemporal patterns, monitoring network design, and environmental justice of air pollution in the Phoenix metropolitan region: a landscape approach

Description

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.

Contributors

Agent

Created

Date Created
  • 2014

154161-Thumbnail Image.png

Ecology and the city: a long-term social-ecological examination of the drivers and diversity of urban vegetation

Description

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however,

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from changing climate norms. The overarching question of my dissertation research was: How does urban vegetation change in response to human behavior? To answer this question, I conducted multiscale research in an arid urban ecosystem as well as in a virtual desert city. I used a combination of long-term data and agent-based modeling to examine changes in vegetation across a range of measures influenced by biophysical, climate, institutional, and socioeconomic drivers. At the regional scale, total plant species diversity increased from 2000 to 2010, while species composition became increasingly homogeneous in urban and agricultural areas. At the residential scale, I investigated the effects of biophysical and socioeconomic drivers – the Great Recession of 2007-2010 in particular – on changing residential yard vegetation in Phoenix, AZ. Socioeconomic drivers affected plant composition and increasing richness, but the housing boom from 2000 through 2005 had a stronger influence on vegetation change than the subsequent recession. Surprisingly, annual plant species remained coupled to winter precipitation despite my expectation that their dynamics might be driven by socioeconomic fluctuations. In a modeling experiment, I examined the relative strength of psychological, social, and governance influences on large-scale urban land cover in a desert city. Model results suggested that social norms may be strong enough to lead to large-scale conversion to low water use residential landscaping, and governance may be unnecessary to catalyze residential landscape conversion under the pressure of extreme drought conditions. Overall, my dissertation research showed that urban vegetation is dynamic, even under the presumably stabilizing influence of human management activities. Increasing climate pressure, unexpected socioeconomic disturbances, growing urban populations, and shifting policies all contribute to urban vegetation dynamics. Incorporating these findings into planning policies will contribute to the sustainable management of urban ecosystems.

Contributors

Agent

Created

Date Created
  • 2015

158438-Thumbnail Image.png

Scientific Foundations and Problem-Driven Case Studies of Landscape Sustainability: Sustainability of Human-Environment Systems Through the Lens of the Landscape

Description

The science community has made efforts for over a half century to address sustainable development, which gave birth to sustainability science at the turn of the twenty-first century. Along

The science community has made efforts for over a half century to address sustainable development, which gave birth to sustainability science at the turn of the twenty-first century. Along with the development of sustainability science during the past two decades, a landscape sustainability science (LSS) perspective has been emerging. As interests in LSS continue to grow rapidly, scholars are wondering what LSS is about and how LSS fits into sustainability science, while practitioners are asking how LSS actually contributes to sustainability in the real world. To help address these questions, this dissertation research aims to explore the currently underused problem-driven, diagnostic approach to enhancing landscape sustainability through an empirical example of urbanization-associated farmland loss (UAFL). Based mainly on multimethod analysis of bibliographic information, the dissertation explores conceptual issues such as how sustainability science differs from conventional sustainable development research, and how the past, present, and future research needs of LSS evolve. It also includes two empirical studies diagnosing the issue of urban expansion and the related food security concern in the context of China, and proposes a different problem framing for farmland preservation such that stakeholders can be more effectively mobilized. The most important findings are: (1) Sustainability science is not “old wine in a new bottle,” and in particular, is featured by its complex human-environment systems perspective and value-laden transdisciplinary perspective. (2) LSS has become a vibrant emerging field since 2004-2006 with over three-decade’s intellectual accumulation deeply rooted in landscape ecology, yet LSS has to further embrace the two featured perspectives of sustainability science and to conduct more problem-driven, diagnostic studies of concrete landscape-relevant sustainability concerns. (3) Farmland preservationists’ existing problem framing of UAFL is inappropriate for its invalid causal attribution (i.e., urban expansion is responsible for farmland loss; farmland loss is responsible for decreasing grain production; and decreasing grain production instead of increasing grain demand is responsible for grain self-insufficiency); the real problem with UAFL is social injustice due to collective action dilemma in preserving farmland for regional and global food sufficiency. The present research provides broad implications for landscape scientists, the sustainability research community, and UAFL stakeholders.

Contributors

Agent

Created

Date Created
  • 2020

155884-Thumbnail Image.png

Evaluating the effectiveness of tree locations and arrangements for improving urban thermal environment

Description

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and well-being. The main obstacle in creating a sustainable urban community in a desert city with trees is the scarceness and cost of irrigation water. Thus, strategically located and arranged desert trees with the fewest tree numbers possible potentially translate into significant energy, water and long-term cost savings as well as conservation, economic, and health benefits. The objective of this dissertation is to achieve this research goal with integrated methods from both theoretical and empirical perspectives.

This dissertation includes three main parts. The first part proposes a spatial optimization method to optimize the tree locations with the objective to maximize shade coverage on building facades and open structures and minimize shade coverage on building rooftops in a 3-dimensional environment. Second, an outdoor urban physical scale model with field measurement is presented to understand the cooling and locational benefits of tree shade. The third part implements a microclimate numerical simulation model to analyze how the specific tree locations and arrangements influence outdoor microclimates and improve human thermal comfort. These three parts of the dissertation attempt to fill the research gap of how to strategically locate trees at the building to neighborhood scale, and quantifying the impact of such arrangements.

Results highlight the significance of arranging residential shade trees across different geographical scales. In both the building and neighborhood scales, research results recommend that trees should be arranged in the central part of the building south front yard. More cooling benefits are provided to the building structures and outdoor microclimates with a cluster tree arrangement without canopy overlap; however, if residents are interested in creating a better outdoor thermal environment, open space between trees is needed to enhance the wind environment for better human thermal comfort. Considering the rapid urbanization process, limited water resources supply, and the severe heat stress in the urban areas, judicious design and planning of trees is of increasing importance for improving the life quality and sustaining the urban environment.

Contributors

Agent

Created

Date Created
  • 2017

149920-Thumbnail Image.png

Ecological connectivity assessment and urban dimensions: a case of Phoenix Metropolitan landscape

Description

This study addresses the landscape connectivity pattern at two different scales. The county-level analysis aims to understand how urban ecosystem structure is likely to evolve in response to the proposed

This study addresses the landscape connectivity pattern at two different scales. The county-level analysis aims to understand how urban ecosystem structure is likely to evolve in response to the proposed development plans in Maricopa County, Arizona. To identify the spatio-temporal land pattern change, six key landscape metrics were quantified in relative to the urban development scenarios based on the certainty of the proposed urban plans with different level of urban footprints. The effects of future development plans from municipalities on landscape connectivity were then analyzed in the scaled temporal and spatial frame to identify in which urban condition the connectivity value would most likely to decrease. The results demonstrated that tremendous amount of lands will be dedicated to future urbanization, and especially urban agricultural lands will be likely to be vulnerable. The metro-level analysis focuses on a group of species that represent urban desert landscape and have different degrees of fragmentation sensitivity and habitat type requirement. It hypothesizes that the urban habitat patch connectivity is impacted upon by urban density. Two underlying propositions were set: first, lower connectivity is predominant in areas with high urbanization cover; second, landscape connectivity will be impacted largely on the interfaces between urban, suburban, and rural areas. To test this, a GIS-based connectivity modeling was employed. The resultant change in connectivity values was examined for exploring the spatial relation to predefined spatial frames, such as urban, suburban, and rural zones of which boundaries were delineated by buffering method with two criteria of human population density and urban cover proportion. The study outcomes provide a practical guidance to minimize connectivity loss and degradation by informing planners with more optimal alternatives among various policy decisions and implementation. It also gives an inspiration for ecological landscape planning in urbanized or urbanizing regions which can ultimately leads urban landscape sustainability.

Contributors

Agent

Created

Date Created
  • 2011