Matching Items (5)
Filtering by

Clear all filters

151900-Thumbnail Image.png
Description
This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and

This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and seed and charcoal identifications provide a comprehensive view of island vs. mainland vegetative trajectories through the critical 1000 year time period from 2500 BC to 1500 BC of both climatic fluctuation and significant anthropogenic forces. This research focuses particularly on the Mediterranean island of Cyprus during this crucial interface of climatic and human impacts on the landscape. Macrobotanical data often are interpreted locally in reference to a specific site, whereas this research draws spatial comparisons between contemporaneous archaeological sites as well as temporal comparisons between non-contemporaneous sites. This larger perspective is particularly crucial on Cyprus, where field scientists commonly assume that botanical macrofossils are poorly preserved, thus unnecessarily limiting their use as an interpretive proxy. These data reveal very minor anthropogenic landscape changes on the island of Cyprus compared to those associated with contemporaneous mainland sites. These data also reveal that climatic forces influenced land use decisions on the mainland sites, and provides crucial evidence pertaining to the rise of early anthropogenic landscapes and urbanized civilization.
ContributorsKlinge, JoAnna M (Author) / Fall, Patricia L. (Thesis advisor) / Falconer, Steven E. (Committee member) / Brazel, Anthony J. (Committee member) / Pigg, Kathleen B (Committee member) / Arizona State University (Publisher)
Created2013
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
157061-Thumbnail Image.png
Description
Monsoon hazards routinely affect the community, economy, and environment of the American Southwest. A common link for hazard development during the North American Monsoon concerns the interplay between temperature, moisture, and wind in the vertical atmosphere controlled by an unstable monsoon circulation. This dissertation investigates vertical atmospheric patterns using in-situ

Monsoon hazards routinely affect the community, economy, and environment of the American Southwest. A common link for hazard development during the North American Monsoon concerns the interplay between temperature, moisture, and wind in the vertical atmosphere controlled by an unstable monsoon circulation. This dissertation investigates vertical atmospheric patterns using in-situ sounding data, specifically, 1) environments favorable for severe hail on the Colorado Plateau, 2) significant parameters distinguishing unhealthy versus healthy ozone days in Phoenix, Arizona, and 3) vertical profile alignments associated with distinct ranges in ozone concentrations observed in Phoenix having defined health impacts.

The first study (published in the Journal of the Arizona-Nevada Academy of Science) determines significant variables on Flagstaff, Arizona 12Z rawinsonde data (1996-2009) found on severe hail days on the Colorado Plateau. Severe hail is related to greater sub-300 hectopascals (hPa) moisture, a warmer atmospheric column, lighter above surface wind speeds, more southerly to southeasterly oriented winds throughout the vertical (except at the 700 hPa pressure level), and higher geopotential heights.

The second study (published in Atmospheric Environment) employs principal component, linear discriminant, and synoptic composite analyses using Phoenix, Arizona rawinsonde data (2006-2016) to identify common monsoon patterns affecting ozone accumulation in the Phoenix metropolitan area. Unhealthy ozone occurs with amplified high-pressure ridging over the Four Corners region, 500 hPa heights often exceeding 5910 meters, surface afternoon temperatures typically over 40°C, lighter wind speeds in the planetary boundary layer under four ms-1, and persistent light easterly flow between 700-500 hPa countering the daytime mountain-valley circulation.

The final study (under revision in Weather and Forecasting) assesses composite atmospheric sounding analysis to forecast Air Quality Index ozone classifications of Good, Moderate, and collectively categories exceeding the U.S. EPA 2015 standard. The analysis, using Phoenix 12Z rawinsonde data (2006-2017), identifies the existence of “pollutant dispersion windows” for ozone accumulation and dispersal in Phoenix.

Ultimately, monsoon hazards result from a complex and evolving vertical atmosphere. This dissertation demonstrates the viability using available in-situ vertical upper-air data to anticipate recurring atmospheric states contributing to specific hazards. These results will improve monsoon hazard prediction in an effort to protect public and infrastructure.
ContributorsMalloy, Jonny William (Author) / Cerveny, Randall S. (Thesis advisor) / Selover, Nancy J (Committee member) / Brazel, Anthony J. (Committee member) / Balling, Robert C. (Committee member) / Arizona State University (Publisher)
Created2019
Description
This research examines lateral separation zones and sand bar slope stability using two methods: a parallelized turbulence resolving model and full-scale laboratory experiments. Lateral flow separation occurs in rivers where banks exhibit strong curvature, for instance canyon rivers, sharp meanders and river confluences. In the Colorado River, downstream Glen Canyon

This research examines lateral separation zones and sand bar slope stability using two methods: a parallelized turbulence resolving model and full-scale laboratory experiments. Lateral flow separation occurs in rivers where banks exhibit strong curvature, for instance canyon rivers, sharp meanders and river confluences. In the Colorado River, downstream Glen Canyon Dam, lateral separation zones are the principal storage of sandbars. Maximum ramp rates have been imposed to Glen Canyon Dam operation to minimize mass loss of sandbars. Assessment of the effect of restricting maximum ramp rates in bar stability is conducted using multiple laboratory experiments. Results reveal that steep sandbar faces would rapidly erode by mass failure and seepage erosion to stable slopes, regardless of dam discharge ramp rates. Thus, continued erosion of sand bars depends primarily of turbulent flow and waves. A parallelized, three-dimensional, turbulence resolving model is developed to study flow structures in two lateral separation zones located along the Colorado River in Grand Canyon. The model employs a Detached Eddy Simulation (DES) technique where variables larger than the grid scale are fully resolved, while Sub-Grid-Scale (SGS) variables are modeled. The DES-3D model is validated using ADCP flow measurements and skill metric scores show predictive capabilities of simulated flow. The model reproduces the patterns and magnitudes of flow velocity in lateral recirculation zones, including size and position of primary and secondary eddy cells and return current. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer, becoming three-dimensional without preferred orientation downstream. The DES-3D model is coupled with a sediment advection-diffusion formulation, wherein advection is provided by the DES velocity field minus particles settling velocity, and diffusion is provided by the SGS. Results show a lateral recirculation zone having a continuous export and import of sediment from and to the main channel following a pattern of high frequency pulsations of positive deposition fluxes. These high frequency pulsations play an important role to prevent an oversupply of sediment within the lateral separation zones. Improved predictive capabilities are achieved with this model when compared with previous two- and three-dimensional quasi steady and steady models.
ContributorsAlvarez Rueda, Laura Verónica (Author) / Schmeeckle, Mark W. (Thesis advisor) / Dorn, Ronald I. (Committee member) / Brazel, Anthony J. (Committee member) / Grams, Paul E. (Committee member) / Topping, David J. (Committee member) / Arizona State University (Publisher)
Created2015
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12