Matching Items (2)
Filtering by

Clear all filters

151900-Thumbnail Image.png
Description
This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and

This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and seed and charcoal identifications provide a comprehensive view of island vs. mainland vegetative trajectories through the critical 1000 year time period from 2500 BC to 1500 BC of both climatic fluctuation and significant anthropogenic forces. This research focuses particularly on the Mediterranean island of Cyprus during this crucial interface of climatic and human impacts on the landscape. Macrobotanical data often are interpreted locally in reference to a specific site, whereas this research draws spatial comparisons between contemporaneous archaeological sites as well as temporal comparisons between non-contemporaneous sites. This larger perspective is particularly crucial on Cyprus, where field scientists commonly assume that botanical macrofossils are poorly preserved, thus unnecessarily limiting their use as an interpretive proxy. These data reveal very minor anthropogenic landscape changes on the island of Cyprus compared to those associated with contemporaneous mainland sites. These data also reveal that climatic forces influenced land use decisions on the mainland sites, and provides crucial evidence pertaining to the rise of early anthropogenic landscapes and urbanized civilization.
ContributorsKlinge, JoAnna M (Author) / Fall, Patricia L. (Thesis advisor) / Falconer, Steven E. (Committee member) / Brazel, Anthony J. (Committee member) / Pigg, Kathleen B (Committee member) / Arizona State University (Publisher)
Created2013
149581-Thumbnail Image.png
Description
Metropolitan Phoenix, Arizona, is one of the most rapidly urbanizing areas in the U.S., which has resulted in an urban heat island (UHI) of substantial size and intensity. Several detrimental biophysical and social impacts arising from the large UHI has posed, and continues to pose, a challenge to stakeholders actively

Metropolitan Phoenix, Arizona, is one of the most rapidly urbanizing areas in the U.S., which has resulted in an urban heat island (UHI) of substantial size and intensity. Several detrimental biophysical and social impacts arising from the large UHI has posed, and continues to pose, a challenge to stakeholders actively engaging in discussion and policy formulation for a sustainable desert city. There is a need to mitigate some of its detrimental effects through sustainable methods, such as through the application of low-water, desert-adapted low-water use trees within residential yards (i.e. urban xeriscaping). This has the potential to sustainably reduce urban temperatures and outdoor thermal discomfort in Phoenix, but evaluating its effectiveness has not been widely researched in this city or elsewhere. Hence, this dissertation first evaluated peer-reviewed literature on UHI research within metropolitan Phoenix and discerned several major themes and factors that drove existing research trajectories. Subsequently, the nocturnal cooling influence of an urban green-space was examined through direct observations and simulations from a microscale climate model (ENVI-Met 3.1) with an improved vegetation parameterization scheme. A distinct park cool island (PCI) of 0.7-3.6 °C was documented from traverse and model data with larger magnitudes closer to the surface. A key factor in the spatial expansion of PCI was advection of cooler air towards adjacent urban surfaces, especially at 0-1 m heights. Modeled results also possessed varying but reasonable accuracy in simulating temperature data, although some systematic errors remained. Finally, ENVI-Met generated xeriscaping scenarios in two residential areas with different surface vegetation cover (mesic vs. xeric), and examined resulting impacts on near-surface temperatures and outdoor thermal comfort. Desert-adapted low-water use shade trees may have strong UHI mitigation potential in xeric residential areas, with greater cooling occurring at (i.) microscales (~2.5 °C) vs. local-scales (~1.1 °C), and during (ii.) nocturnal (0500 h) vs. daytime periods (1700 h) under high xeriscaping scenarios. Conversely, net warming from increased xeriscaping occurred over mesic residential neighborhoods over all spatial scales and temporal periods. These varying results therefore must be considered by stakeholders when considering residential xeriscaping as a UHI mitigation method.
ContributorsChow, Winston T. L (Author) / Brazel, Anthony J. (Thesis advisor) / Grossman-Clarke, Susanne (Committee member) / Martin, Chris A (Committee member) / Arizona State University (Publisher)
Created2011