Matching Items (4)
156751-Thumbnail Image.png
Description
In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at

In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at risk and also lead to user reluctance in accepting services or sharing data. This dissertation first investigates privacy sensitive consumer-retailers/service providers interactions under different scenarios, and then focuses on a unified framework for various information-theoretic privacy and privacy mechanisms that can be learned directly from data.

Existing approaches such as differential privacy or information-theoretic privacy try to quantify privacy risk but do not capture the subjective experience and heterogeneous expression of privacy-sensitivity. The first part of this dissertation introduces models to study consumer-retailer interaction problems and to better understand how retailers/service providers can balance their revenue objectives while being sensitive to user privacy concerns. This dissertation considers the following three scenarios: (i) the consumer-retailer interaction via personalized advertisements; (ii) incentive mechanisms that electrical utility providers need to offer for privacy sensitive consumers with alternative energy sources; (iii) the market viability of offering privacy guaranteed free online services. We use game-theoretic models to capture the behaviors of both consumers and retailers, and provide insights for retailers to maximize their profits when interacting with privacy sensitive consumers.

Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. In the second part, a novel context-aware privacy framework called generative adversarial privacy (GAP) is introduced. Inspired by recent advancements in generative adversarial networks, GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. For appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. Both synthetic and real-world datasets are used to show that GAP can greatly reduce the adversary's capability of inferring private information at a small cost of distorting the data.
ContributorsHuang, Chong (Author) / Sankar, Lalitha (Thesis advisor) / Kosut, Oliver (Committee member) / Nedich, Angelia (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
157308-Thumbnail Image.png
Description
Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models

Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models such as a generative adversarial network (GAN) and generative adversarial autoencoder (AAE) has enabled to learn the complex spatial structures automatically. Inspired by this advancement, we propose an anomaly detection framework based on the AAE for unsupervised anomaly detection for images. AAE combines the power of GAN with the variational autoencoder, which serves as a nonlinear dimension reduction technique with regularization from the discriminator. Based on this, we propose a monitoring statistic efficiently capturing the change of the image data. The performance of the proposed AAE-based anomaly detection algorithm is validated through a simulation study and real case study for rolling defect detection.
ContributorsYeh, Huai-Ming (Author) / Yan, Hao (Thesis advisor) / Pan, Rong (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2019
171883-Thumbnail Image.png
Description
With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more challenging task for the modern power system. This is because with higher penetration of renewable generation, the system has to bear a higher degree of variability and uncertainty. One way

With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more challenging task for the modern power system. This is because with higher penetration of renewable generation, the system has to bear a higher degree of variability and uncertainty. One way to address this problem is by generating realistic scenarios that complement and supplement actual system conditions. This thesis presents a methodology to create such correlated synthetic scenarios for load and renewable generation using machine learning. Machine learning algorithms need to have ample amounts of data available to them for training purposes. However, real-world datasets are often skewed in the distribution of the different events in the sample space. Data augmentation and scenario generation techniques are often utilized to complement the datasets with additional samples or by filling in missing data points. Datasets pertaining to the electric power system are especially prone to having very few samples for certain events, such as abnormal operating conditions, as they are not very common in an actual power system. A recurrent generative adversarial network (GAN) model is presented in this thesis to generate solar and load scenarios in a correlated manner using an actual dataset obtained from a power utility located in the U.S. Southwest. The generated solar and load profiles are verified both statistically and by implementation on a simulated test system, and the performance of correlated scenario generation vs. uncorrelated scenario generation is investigated. Given the interconnected relationships between the variables of the dataset, it is observed that correlated scenario generation results in more realistic synthetic scenarios, particularly for abnormal system conditions. When combined with actual but scarce abnormal conditions, the augmented dataset of system conditions provides a better platform for performing contingency studies for a more thorough reliability planning. The proposed scenario generation method is scalable and can be modified to work with different time-series datasets. Moreover, when the model is trained in a conditional manner, it can be used to synthesise any number of scenarios for the different events present in a given dataset. In summary, this thesis explores scenario generation using a recurrent conditional GAN and investigates the benefits of correlated generation compared to uncorrelated synthesis of profiles for the reliability planning problem of power systems.
ContributorsBilal, Muhammad (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2022
158419-Thumbnail Image.png
Description
Object detection is an interesting computer vision area that is concerned with the detection of object instances belonging to specific classes of interest as well as the localization of these instances in images and/or videos. Object detection serves as a vital module in many computer vision based applications. This work

Object detection is an interesting computer vision area that is concerned with the detection of object instances belonging to specific classes of interest as well as the localization of these instances in images and/or videos. Object detection serves as a vital module in many computer vision based applications. This work focuses on the development of object detection methods that exhibit increased robustness to varying illuminations and image quality. In this work, two methods for robust object detection are presented.

In the context of varying illumination, this work focuses on robust generic obstacle detection and collision warning in Advanced Driver Assistance Systems (ADAS) under varying illumination conditions. The highlight of the first method is the ability to detect all obstacles without prior knowledge and detect partially occluded obstacles including the obstacles that have not completely appeared in the frame (truncated obstacles). It is first shown that the angular distortion in the Inverse Perspective Mapping (IPM) domain belonging to obstacle edges varies as a function of their corresponding 2D location in the camera plane. This information is used to generate object proposals. A novel proposal assessment method based on fusing statistical properties from both the IPM image and the camera image to perform robust outlier elimination and false positive reduction is also proposed.

In the context of image quality, this work focuses on robust multiple-class object detection using deep neural networks for images with varying quality. The use of Generative Adversarial Networks (GANs) is proposed in a novel generative framework to generate features that provide robustness for object detection on reduced quality images. The proposed GAN-based Detection of Objects (GAN-DO) framework is not restricted to any particular architecture and can be generalized to several deep neural network (DNN) based architectures. The resulting deep neural network maintains the exact architecture as the selected baseline model without adding to the model parameter complexity or inference speed. Performance results provided using GAN-DO on object detection datasets establish an improved robustness to varying image quality and a higher object detection and classification accuracy compared to the existing approaches.
ContributorsPrakash, Charan Dudda (Author) / Karam, Lina (Thesis advisor) / Abousleman, Glen (Committee member) / Jayasuriya, Suren (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2020