Matching Items (2)
Filtering by

Clear all filters

156869-Thumbnail Image.png
Description
Multimodal Representation Learning is a multi-disciplinary research field which aims to integrate information from multiple communicative modalities in a meaningful manner to help solve some downstream task. These modalities can be visual, acoustic, linguistic, haptic etc. The interpretation of ’meaningful integration of information from different modalities’ remains modality and task

Multimodal Representation Learning is a multi-disciplinary research field which aims to integrate information from multiple communicative modalities in a meaningful manner to help solve some downstream task. These modalities can be visual, acoustic, linguistic, haptic etc. The interpretation of ’meaningful integration of information from different modalities’ remains modality and task dependent. The downstream task can range from understanding one modality in the presence of information from other modalities, to that of translating input from one modality to another. In this thesis the utility of multimodal representation learning for understanding one modality vis-à-vis Image Understanding for Visual Reasoning given corresponding information in other modalities, as well as translating from one modality to the other, specifically, Text to Image Translation was investigated.

Visual Reasoning has been an active area of research in computer vision. It encompasses advanced image processing and artificial intelligence techniques to locate, characterize and recognize objects, regions and their attributes in the image in order to comprehend the image itself. One way of building a visual reasoning system is to ask the system to answer questions about the image that requires attribute identification, counting, comparison, multi-step attention, and reasoning. An intelligent system is thought to have a proper grasp of the image if it can answer said questions correctly and provide a valid reasoning for the given answers. In this work how a system can be built by learning a multimodal representation between the stated image and the questions was investigated. Also, how background knowledge, specifically scene-graph information, if available, can be incorporated into existing image understanding models was demonstrated.

Multimodal learning provides an intuitive way of learning a joint representation between different modalities. Such a joint representation can be used to translate from one modality to the other. It also gives way to learning a shared representation between these varied modalities and allows to provide meaning to what this shared representation should capture. In this work, using the surrogate task of text to image translation, neural network based architectures to learn a shared representation between these two modalities was investigated. Also, the ability that such a shared representation is capable of capturing parts of different modalities that are equivalent in some sense is proposed. Specifically, given an image and a semantic description of certain objects present in the image, a shared representation between the text and the image modality capable of capturing parts of the image being mentioned in the text was demonstrated. Such a capability was showcased on a publicly available dataset.
ContributorsSaha, Rudra (Author) / Yang, Yezhou (Thesis advisor) / Singh, Maneesh Kumar (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2018
187694-Thumbnail Image.png
Description
In the era of information explosion and multi-modal data, information retrieval (IR) and question answering (QA) systems have become essential in daily human activities. IR systems aim to find relevant information in response to user queries, while QA systems provide concise and accurate answers to user questions. IR and

In the era of information explosion and multi-modal data, information retrieval (IR) and question answering (QA) systems have become essential in daily human activities. IR systems aim to find relevant information in response to user queries, while QA systems provide concise and accurate answers to user questions. IR and QA are two of the most crucial challenges in the realm of Artificial Intelligence (AI), with wide-ranging real-world applications such as search engines and dialogue systems. This dissertation investigates and develops novel models and training objectives to enhance current retrieval systems in textual and multi-modal contexts. Moreover, it examines QA systems, emphasizing generalization and robustness, and creates new benchmarks to promote their progress. Neural retrievers have surfaced as a viable solution, capable of surpassing the constraints of traditional term-matching search algorithms. This dissertation presents Poly-DPR, an innovative multi-vector model architecture that manages test-query, and ReViz, a comprehensive multimodal model to tackle multi-modality queries. By utilizing IR-focused pretraining tasks and producing large-scale training data, the proposed methodology substantially improves the abilities of existing neural retrievers.Concurrently, this dissertation investigates the realm of QA systems, referred to as ``readers'', by performing an exhaustive analysis of current extractive and generative readers, which results in a reliable guidance for selecting readers for downstream applications. Additionally, an original reader (Two-in-One) is designed to effectively choose the pertinent passages and sentences from a pool of candidates for multi-hop reasoning. This dissertation also acknowledges the significance of logical reasoning in real-world applications and has developed a comprehensive testbed, LogiGLUE, to further the advancement of reasoning capabilities in QA systems.
ContributorsLuo, Man (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Blanco, Eduardo (Committee member) / Chen, Danqi (Committee member) / Arizona State University (Publisher)
Created2023