Matching Items (2)
Filtering by

Clear all filters

156512-Thumbnail Image.png
Description
Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta

Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta amyloid proteins better, antibody fragments may be used to bind to these oligomers and potentially reduce the effects of Alzheimer’s disease.

This thesis focused on the expression and crystallization the fragment antigen binding antibody fragment A4. A fragment antigen binding fragment was chosen to be worked with as it is more stable than many other antibody fragments. A4 is important in Alzheimer’s disease as it is able to identify toxic beta amyloid.
ContributorsColasurd, Paige (Author) / Nannenga, Brent (Thesis advisor) / Mills, Jeremy (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2018
157920-Thumbnail Image.png
Description
Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones,

Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. In 2011, Haynes et al. showed that a synthetic regulator called the Polycomb chromatin Transcription Factor (PcTF), a fusion protein that binds methylated histones, reactivated an artificially-silenced luciferase reporter gene. These synthetic transcription activators are derived from the polycomb repressive complex (PRC) and associate with the epigenetic silencing mark H3K27me3 to reactivate the expression of silenced genes. It is demonstrated here that the duration of epigenetic silencing does not perturb reactivation via PcTF fusion proteins. After 96 hours PcTF shows the strongest reactivation activity. A variant called Pc2TF, which has roughly double the affinity for H3K27me3 in vitro, reactivated the silenced luciferase gene by at least 2-fold in living cells.
ContributorsVargas, Daniel A. (Author) / Haynes, Karmella (Thesis advisor) / Wang, Xiao (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2019