Matching Items (2)
Filtering by

Clear all filters

156876-Thumbnail Image.png
Description
Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen

Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen as having shaped the major patterns of human and faunal evolution. Despite the ubiquity of studies linking climate and environmental forcing to evolutionary and ecological shifts in the mammalian fossil record, many central components of this paradigm remain untested or poorly developed. To fill this gap, this dissertation employs biogeographical and macroecological analyses of present-day African mammal communities as a lens for understanding how abiotic change may have shaped community turnover and structure in the eastern African Plio-Pleistocene. Three dissertation papers address: 1) the role of ecological niche breadth in shaping divergent patterns of macroevolutionary turnover across clades; 2) the effect of climatic and environmental gradients on community assembly; 3) the relative influence of paleo- versus present-day climates in structuring contemporary patterns of community diversity. Results of these papers call into question many tenets of current theory, particularly: 1) that niche breadth differences (and, by extension, their influence on allopatric speciation) are important drivers of macroevolution, 2) that climate is more important than biotic interactions in community assembly, and 3) that communities today are in equilibrium with present-day climates. These findings highlight the need to critically reevaluate the role and scale-dependence of climate in mammal evolution and community ecology and to carefully consider potential time lags and disequilibrium dynamics in the fossil record.
ContributorsRowan, John (Author) / Reed, Kaye E (Thesis advisor) / Campisano, Christopher J (Committee member) / Franklin, Janet (Committee member) / Marean, Curtis W (Committee member) / Arizona State University (Publisher)
Created2018
158266-Thumbnail Image.png
Description
Stable carbon isotope data for early Pliocene hominins Ardipithecus ramidus and Australopithecus anamensis show narrow, C3-dominated isotopic signatures. Conversely, mid-Pliocene Au. afarensis has a wider isotopic distribution and consumed both C3 and C4 plants, indicating a transition to a broader dietary niche by ~ 3.5 million years ago (Ma). Dietary

Stable carbon isotope data for early Pliocene hominins Ardipithecus ramidus and Australopithecus anamensis show narrow, C3-dominated isotopic signatures. Conversely, mid-Pliocene Au. afarensis has a wider isotopic distribution and consumed both C3 and C4 plants, indicating a transition to a broader dietary niche by ~ 3.5 million years ago (Ma). Dietary breadth is an important aspect of the modern human adaptive suite, but why hominins expanded their dietary niche ~ 3.5 Ma is poorly understood at present. Eastern Africa has produced a rich Pliocene record of hominin species and associated mammalian faunas that can be used to address this question. This dissertation hypothesizes that the shift in hominin dietary breadth was driven by a transition to more open and seasonal environments in which food resources were more patchily distributed both spatially and temporally. To this end, I use a multiproxy approach that combines hypsodonty, mesowear, faunal abundance, and stable isotope data for temporally well-constrained early and mid-Pliocene mammal assemblages (5.3-2.95 Ma) from Ethiopia, Kenya, and Tanzania to infer patterns of environmental change through time. Hypsodonty analyses revealed that early Pliocene sites had higher annual precipitation, lower precipitation seasonality, and lower temperature seasonality than mid-Pliocene sites. Mesowear analyses, however, did not show from attrition- to abrasion- dominated wear through time. Abundance data suggest that there was a trend towards aridity, as Tragelaphini (woodland antelope) decline while Alcelaphini (grassland antelope) increased in abundance through time. Carbon isotope data indicate that most taxa shifted to diets focusing on C4 grasses through time, which closely follows paleosol carbon isotope data documenting the expansion of grassland ecosystems in eastern Africa. Overall, the results suggest Ar. ramidus and Au. anamensis preferentially exploited habitats in which preferred food resources were likely available year-round, whereas Au. afarensis lived in more variable, seasonal environments in which preferred foods were available seasonally. Au. afarensis and K. platyops likely expanded their dietary niche in less stable environments, as reflected in their wider isotopic niche breadth.
ContributorsSeyoum, Chalachew Mesfin (Author) / Kimbel, William H. (Thesis advisor) / Reed, Kaye (Thesis advisor) / Campisano, Christopher (Committee member) / Alemseged, Zeresenay (Committee member) / Arizona State University (Publisher)
Created2020