Matching Items (8)
Filtering by

Clear all filters

150070-Thumbnail Image.png
Description
This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The

This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The archaeological record suggests that increases in social complexity were linked to climatic episodes (e.g., favorable climatic conditions coincide with intervals of prosperity or marked social development such as the Neolithic Revolution ca. 11.5 ka BP, the Secondary Products Revolution ca. 6 ka BP, and the Middle Bronze Age ca. 4 ka BP). The opposite can be said about periods of climatic deterioration, when settled villages were abandoned as the inhabitants returned to nomadic or semi nomadic lifestyles (e.g., abandonment of the largest Neolithic farming towns after 8 ka BP and collapse of Bronze Age towns and cities after 3.5 ka BP during the Late Bronze Age). This study develops chronologically refined models of past vegetation from 12 to 2.5 ka BP, at 500 year intervals, using GIS, remote sensing and statistical modeling tools (MAXENT) that derive from species distribution modeling. Plants are sensitive to alterations in their environment and respond accordingly. Because of this, they are valuable indicators of landscape change. An extensive database of historical and field gathered observations was created. Using this database as well as environmental variables that include temperature and precipitation surfaces for the whole study period (also at 500 year intervals), the potential vegetation of the region was modeled. Through this means, a continuous chronology of potential vegetation of the Southern Levantwas built. The produced paleo-vegetation models generally agree with the proxy records. They indicate a gradual decline of forests and expansion of steppe and desert throughout the Holocene, interrupted briefly during the Mid Holocene (ca. 4 ka BP, Middle Bronze Age). They also suggest that during the Early Holocene, forest areas were extensive, spreading into the Northern Negev. The two remaining forested areas in the Northern and Southern Plateau Region in Jordan were also connected during this time. The models also show general agreement with the major cultural developments, with forested areas either expanding or remaining stable during prosperous periods (e.g., Pre Pottery Neolithic and Middle Bronze Age), and significantly contracting during moments of instability (e.g., Late Bronze Age).
ContributorsSoto-Berelov, Mariela (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe (Committee member) / Turner, Billie L (Committee member) / Falconer, Steven (Committee member) / Arizona State University (Publisher)
Created2011
Description

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The decomposition approach helps to formulate complex interactions that are otherwise difficult or impractical to express. However, hybrid model development and

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The decomposition approach helps to formulate complex interactions that are otherwise difficult or impractical to express. However, hybrid model development and usage can introduce complexity that emerges from the composition itself.

To improve assurance of model correctness, sub-systems using disparate modeling formalisms must be integrated above and beyond just the data and control level; their composition must have model specification and simulation execution aspects as well. Poly-formalism composition is one approach to composing models in this manner.

This dissertation describes a poly-formalism composition between a Discrete EVent System specification (DEVS) model and a Cellular Automata (CA) model types. These model specifications have been chosen for their broad applicability in important and emerging domains. An agent-environment domain exemplifies the composition approach. The inherent spatial relations within a CA make it well-suited for environmental representations. Similarly, the component-based nature of agents fits well within the hierarchical component structure of DEVS.

This composition employs the use of a third model, called an interaction model, that includes methods for integrating the two model types at a formalism level, at a systems architecture level, and at a model execution level. A prototype framework using DEVS for the agent model and GRASS for the environment has been developed and is described. Furthermore, this dissertation explains how the concepts of this composition approach are being applied to a real-world research project.

This dissertation expands the tool set modelers in computer science and other disciplines have in order to build hybrid system models, and provides an interaction model for an on-going research project. The concepts and models presented in this dissertation demonstrate the feasibility of composition between discrete-event agents and discrete-time cellular automata. Furthermore, it provides concepts and models that may be applied directly, or used by a modeler to devise compositions for other research efforts.

ContributorsMayer, Gary R. (Author)
Created2009
Description

Contributed paper presented at the 72st Annual Meeting of the Society for American Archaeology, Austin, TX.

ContributorsRempel, Sydney (Author) / Soto-Berelov, Mariela (Author) / Falconer, Steven E. (Author) / Fall, Patricia L. (Author)
Created2007