Matching Items (12)
Filtering by

Clear all filters

153103-Thumbnail Image.png
Description
A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software delivery model, in which mission-critical applications are composed, deployed, and executed on cloud platforms. Testing SaaS applications is challenging because

A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software delivery model, in which mission-critical applications are composed, deployed, and executed on cloud platforms. Testing SaaS applications is challenging because new applications need to be tested once they are composed, and prior to their deployment. A composition of components providing services yields a configuration providing a SaaS application. While individual components

in the configuration may have been thoroughly tested, faults still arise due to interactions among the components composed, making the configuration faulty. When there are k components, combinatorial testing algorithms can be used to identify faulty interactions for t or fewer components, for some threshold 2 <= t <= k on the size of interactions considered. In general these methods do not identify specific faults, but rather indicate the presence or absence of some fault. To identify specific faults, an adaptive testing regime repeatedly constructs and tests configurations in order to determine, for each interaction of interest, whether it is faulty or not. In order to perform such testing in a loosely coupled distributed environment such as

the cloud, it is imperative that testing results can be combined from many different servers. The TA defines rules to permit results to be combined, and to identify the faulty interactions. Using the TA, configurations can be tested concurrently on different servers and in any order. The results, using the TA, remain the same.
ContributorsQi, Guanqiu (Author) / Tsai, Wei-Tek (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
Description

Dramatic changes in land use were associated with the rise of agriculture in the mid Holocene in the Mediterranean region. Both surface properties and drainage networks were changed along with direct modifications to surface properties (vegetation removal and change, sediment liberation and compaction); consequent drainage alteration (terracing, canals) and u

Dramatic changes in land use were associated with the rise of agriculture in the mid Holocene in the Mediterranean region. Both surface properties and drainage networks were changed along with direct modifications to surface properties (vegetation removal and change, sediment liberation and compaction); consequent drainage alteration (terracing, canals) and up and downstream responses in the watersheds communicated these changes throughout the landscape.

The magnitude, rate, and feedbacks with the growing human populations are critical questions in our effort to assess human-landscape interactions. To investigate these relationships, recent field work in the Penaguila Valley of southeast Spain included landform mapping, alluvial deposit description, and sample collection emphasizing areas of active erosion, remnant land surfaces and their relation to archaeological sites.

We have updated our geomorphic maps by refining the delineation of alluvial terraces, steep-walled (40m deep) drainages ("barrancos"), and hollows ("barrancos de fondo plano"). Hollows are curved, elongate, flat-bottomed gullies with steep walls (2-30m tall) and extend headward from the main barrancos. This work enables more accurate terrace correlations necessary for both landscape evolution modeling and interpretation of the development history of the basin.

Alluvial terraces are crucial to this research because they record periods of past stable topography. In the Penaguila, sites dating back to late Mesolithic and early Neolithic (around 6600 BP) and subsequent periods (Chalcolithic and Bronze Age) are exposed on a prominent terrace surface mapped as Terrace A. This broad low relief surface is scarred by deep barrancos and hollow formation that expose bedrock marls and overlying alluvial deposits. Stratigraphic profiles and texture analyses of Terrace A deposits reveal overland flow facies and channel networks in reworked and CaCO3-encrusted marls, and several organic-rich paleosols. Small remnant surfaces mapped as Terrace Z (below Terrace A) were observed within the main barrancos and indicate a later, brief accumulation period with subsequent incision to the modern channel.

Holocene landscape development in the Penaguila appears to have progressed from a period of stability to slope denudation with aggradation (stream infilling) followed by rapid incision which initiated sometime near the time of occupation. This change from a low relief alluvial surface to one cut by narrow channels may have been an important shift for local populations. Their response to that environmental modification may be associated with the horticulturalist to agricultural intensification noted in the archaeological record. Tighter chronology and better understanding of the driving processes for barranco incision and hollow formation will improve our ability to correlate the changing landscape with land use practices. Such an improved correlation leads to better understanding of human-landscape interactions.

ContributorsDiMaggio, E. N. (Author) / La Roca, N. (Author) / Arrowsmith, J. Ramon (Author) / Diez-Castillo, A. (Author) / Bernabeu, J. (Author) / Barton, C. Michael (Author)
154217-Thumbnail Image.png
Description
Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable,

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency.

This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.

The following chapters are provided in the architecture:

Multi-Tenancy Simulation Software-as-a-Service.

Policy Specification for MTA simulation environment.

Model Driven PaaS Based SaaS modeling.

Dynamic analysis and dynamic calibration for timing analysis.

Event-driven Service-Oriented Simulation Framework.

LTBD: A Triage Solution for SaaS.
ContributorsLi, Wu (Author) / Tsai, Wei-Tek (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Ye, Jieping (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2015
Description

Invited paper presented at the Workshop on Aspects of Social and Socio-Environmental Dynamics, Arizona State University, January 2007.

ContributorsSarjoughian, Hessam S. (Author) / Barton, C. Michael (Author)
Created2007