Matching Items (3)
Filtering by

Clear all filters

156371-Thumbnail Image.png
Description
Generalized Linear Models (GLMs) are widely used for modeling responses with non-normal error distributions. When the values of the covariates in such models are controllable, finding an optimal (or at least efficient) design could greatly facilitate the work of collecting and analyzing data. In fact, many theoretical results are obtained

Generalized Linear Models (GLMs) are widely used for modeling responses with non-normal error distributions. When the values of the covariates in such models are controllable, finding an optimal (or at least efficient) design could greatly facilitate the work of collecting and analyzing data. In fact, many theoretical results are obtained on a case-by-case basis, while in other situations, researchers also rely heavily on computational tools for design selection.

Three topics are investigated in this dissertation with each one focusing on one type of GLMs. Topic I considers GLMs with factorial effects and one continuous covariate. Factors can have interactions among each other and there is no restriction on the possible values of the continuous covariate. The locally D-optimal design structures for such models are identified and results for obtaining smaller optimal designs using orthogonal arrays (OAs) are presented. Topic II considers GLMs with multiple covariates under the assumptions that all but one covariate are bounded within specified intervals and interaction effects among those bounded covariates may also exist. An explicit formula for D-optimal designs is derived and OA-based smaller D-optimal designs for models with one or two two-factor interactions are also constructed. Topic III considers multiple-covariate logistic models. All covariates are nonnegative and there is no interaction among them. Two types of D-optimal design structures are identified and their global D-optimality is proved using the celebrated equivalence theorem.
ContributorsWang, Zhongsheng (Author) / Stufken, John (Thesis advisor) / Kamarianakis, Ioannis (Committee member) / Kao, Ming-Hung (Committee member) / Reiser, Mark R. (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
155868-Thumbnail Image.png
Description
This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way

This study concerns optimal designs for experiments where responses consist of both binary and continuous variables. Many experiments in engineering, medical studies, and other fields have such mixed responses. Although in recent decades several statistical methods have been developed for jointly modeling both types of response variables, an effective way to design such experiments remains unclear. To address this void, some useful results are developed to guide the selection of optimal experimental designs in such studies. The results are mainly built upon a powerful tool called the complete class approach and a nonlinear optimization algorithm. The complete class approach was originally developed for a univariate response, but it is extended to the case of bivariate responses of mixed variable types. Consequently, the number of candidate designs are significantly reduced. An optimization algorithm is then applied to efficiently search the small class of candidate designs for the D- and A-optimal designs. Furthermore, the optimality of the obtained designs is verified by the general equivalence theorem. In the first part of the study, the focus is on a simple, first-order model. The study is expanded to a model with a quadratic polynomial predictor. The obtained designs can help to render a precise statistical inference in practice or serve as a benchmark for evaluating the quality of other designs.
ContributorsKim, Soohyun (Author) / Kao, Ming-Hung (Thesis advisor) / Dueck, Amylou (Committee member) / Pan, Rong (Committee member) / Reiser, Mark R. (Committee member) / Stufken, John (Committee member) / Arizona State University (Publisher)
Created2017
158061-Thumbnail Image.png
Description
Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model

Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model that is considered here involves a mixture of ordinary linear models for the continuous response and a generalized linear model for the binary response. Using the complete class approach, tighter upper bounds on the number of support points required for finding locally optimal designs are derived for the mixed responses models studied in this work.

In the first part of this dissertation, a theoretical result was developed to facilitate the search of locally symmetric optimal designs for mixed responses models with one continuous covariate. Then, the study was extended to mixed responses models that include group effects. Two types of mixed responses models with group effects were investigated. The first type includes models having no common parameters across subject group, and the second type of models allows some common parameters (e.g., a common slope) across groups. In addition to complete class results, an efficient algorithm (PSO-FM) was proposed to search for the A- and D-optimal designs. Finally, the first-order mixed responses model is extended to a type of a quadratic mixed responses model with a quadratic polynomial predictor placed in its linear model.
ContributorsKhogeer, Hazar Abdulrahman (Author) / Kao, Ming-Hung (Thesis advisor) / Stufken, John (Committee member) / Reiser, Mark R. (Committee member) / Zheng, Yi (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2020