Matching Items (2)
Filtering by

Clear all filters

156589-Thumbnail Image.png
Description
The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV

The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV modules lying in the landfills by 2050, that may not become a not-so-sustainable way of sourcing energy since all PV modules could contain certain amount of toxic substances. Currently in the United States, PV modules are categorized as general waste and can be disposed in landfills. However, potential leaching of toxic chemicals and materials, if any, from broken end-of-life modules may pose health or environmental risks. There is no standard procedure to remove samples from PV modules for chemical toxicity testing in the Toxicity Characteristic Leaching Procedure (TCLP) laboratories as per EPA 1311 standard. The main objective of this thesis is to develop an unbiased sampling approach for the TCLP testing of PV modules. The TCLP testing was concentrated only for the laminate part of the modules, as they are already existing recycling technologies for the frame and junction box components of PV modules. Four different sample removal methods have been applied to the laminates of five different module manufacturers: coring approach, cell-cut approach, strip-cut approach, and hybrid approach. These removed samples were sent to two different TCLP laboratories, and TCLP results were tested for repeatability within a lab and reproducibility between the labs. The pros and cons of each sample removal method have been explored and the influence of sample removal methods on the variability of TCLP results has been discussed. To reduce the variability of TCLP results to an acceptable level, additional improvements in the coring approach, the best of the four tested options, are still needed.
ContributorsLeslie, Joswin (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
158198-Thumbnail Image.png
Description
Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are detected ubiquitously in the aquatic environment, biota, and humans. Human exposure and adverse health of PFAS through consuming impacted drinking water is getting regulatory attention. Adsorption using granular activated carbon (GAC) and ion exchange resin (IX) has

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are detected ubiquitously in the aquatic environment, biota, and humans. Human exposure and adverse health of PFAS through consuming impacted drinking water is getting regulatory attention. Adsorption using granular activated carbon (GAC) and ion exchange resin (IX) has proved to be efficient in removing PFAS from water. There is a need to study the effectiveness of commercially available sorbents in PFAS removal at the pilot-scale with real PFAS contaminated water, which would aid in efficient full-scale plant design. Additionally, there is also a need to have validated bench-scale testing techniques to aid municipalities and researchers in selecting or comparing adsorbents to remove PFAS. Rapid Small-Scale Column Tests (RSSCTs) are bench-scale testing to assess media performance and operational life to remove trace organics but have not been validated for PFAS. Different design considerations exist for RSSCTs, which rely upon either proportional diffusivity (PD) or constant diffusivity (CD) dimensionless scaling relationships.

This thesis aims to validate the use of RSSCTs to simulate PFAS breakthrough in pilot columns. First, a pilot-scale study using two GACs and an IX was conducted for five months at a wellsite in central Arizona. PFAS adsorption capacity was greatest for a commercial IX, and then two GAC sources exhibited similar performance. Second, RSSCTs scaled using PD or CD relationships, simulated the pilot columns, were designed and performed. For IX and the two types of GAC, the CD–RSSCTs simulated the PFAS breakthrough concentration, shape, and order of C8 to C4 compounds observed pilot columns better than the PD-RSSCTs. Finally, PFAS breakthrough and adsorption capacities for PD- and CD-RSSCTs were performed on multiple groundwaters (GWs) from across Arizona to assess the treatability of PFAS chain length and functional head-group moieties. PFAS breakthrough in GAC and IX was dictated by chain length (C4>C6>C8) and functional group (PFCAs>PFSAs) of the compound. Shorter-chain PFAS broke through earlier than the longer chain, and removal trends were related to the hydrophobicity of PFAS. Overall, single-use IX performed superior to any of the evaluated GACs across a range of water chemistries in Arizona GWs.
ContributorsVenkatesh, Krishishvar (Author) / Westerhoff, Paul (Thesis advisor) / Sinha, Shahnawaz (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2020