Matching Items (3)
Filtering by

Clear all filters

152468-Thumbnail Image.png
Description
My dissertation contributes to a body of knowledge useful for understanding the evolution of subsistence economies based on agriculture from those based on hunting and gathering, as well as the development of formal rules and norms of territorial ownership in hunter-gatherer societies. My research specifically combines simple formal and conceptual

My dissertation contributes to a body of knowledge useful for understanding the evolution of subsistence economies based on agriculture from those based on hunting and gathering, as well as the development of formal rules and norms of territorial ownership in hunter-gatherer societies. My research specifically combines simple formal and conceptual models with the empirical analysis of large ethnographic and environmental data sets to study feedback processes in coupled forager-resource systems. I use the formal and conceptual models of forager-resource systems as tools that aid in the development of two alternative arguments that may explain the adoption of food production and formal territorial ownership among hunter-gatherers. I call these arguments the Uncertainty Reduction Hypothesis and the Social Opportunity Hypothesis. Based on the logic of these arguments, I develop expectations for patterns of food production and formal territorial ownership documented in the ethnographic record of hunter-gatherer societies and evaluate these expectations with large ethnographic and environmental data sets. My analysis suggests that the Uncertainty Reduction Hypothesis is more consistent with the data than the Social Opportunity Hypothesis. Overall, my approach combines the intellectual frameworks of evolutionary ecology and resilience thinking. The result is a theory of subsistence change that integrates elements of three classic models of economic development with deep intellectual roots in human ecology: The Malthusian, Boserupian and Weberian models. A final take home message of my study is that evolutionary ecology and resilience thinking are complementary frameworks for archaeologists who study the transition from hunting and gathering to farming.
ContributorsFreeman, Jacob (Author) / Anderies, John M (Thesis advisor) / Nelson, Margaret C. (Thesis advisor) / Barton, C Michael (Committee member) / Arizona State University (Publisher)
Created2014
Description

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The decomposition approach helps to formulate complex interactions that are otherwise difficult or impractical to express. However, hybrid model development and

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The decomposition approach helps to formulate complex interactions that are otherwise difficult or impractical to express. However, hybrid model development and usage can introduce complexity that emerges from the composition itself.

To improve assurance of model correctness, sub-systems using disparate modeling formalisms must be integrated above and beyond just the data and control level; their composition must have model specification and simulation execution aspects as well. Poly-formalism composition is one approach to composing models in this manner.

This dissertation describes a poly-formalism composition between a Discrete EVent System specification (DEVS) model and a Cellular Automata (CA) model types. These model specifications have been chosen for their broad applicability in important and emerging domains. An agent-environment domain exemplifies the composition approach. The inherent spatial relations within a CA make it well-suited for environmental representations. Similarly, the component-based nature of agents fits well within the hierarchical component structure of DEVS.

This composition employs the use of a third model, called an interaction model, that includes methods for integrating the two model types at a formalism level, at a systems architecture level, and at a model execution level. A prototype framework using DEVS for the agent model and GRASS for the environment has been developed and is described. Furthermore, this dissertation explains how the concepts of this composition approach are being applied to a real-world research project.

This dissertation expands the tool set modelers in computer science and other disciplines have in order to build hybrid system models, and provides an interaction model for an on-going research project. The concepts and models presented in this dissertation demonstrate the feasibility of composition between discrete-event agents and discrete-time cellular automata. Furthermore, it provides concepts and models that may be applied directly, or used by a modeler to devise compositions for other research efforts.

ContributorsMayer, Gary R. (Author)
Created2009