Matching Items (2)
Filtering by

Clear all filters

155279-Thumbnail Image.png
Description
Background: Stroke is a leading cause of long-term disability in the United States (US). Assisted Cycling Therapy (ACT) incorporates the use of an electric motor to enhance the rotations per minute (rpm). ACT of about 80 rpm, has been associated with improvements in motor, cognitive, and clinical function. The acute

Background: Stroke is a leading cause of long-term disability in the United States (US). Assisted Cycling Therapy (ACT) incorporates the use of an electric motor to enhance the rotations per minute (rpm). ACT of about 80 rpm, has been associated with improvements in motor, cognitive, and clinical function. The acute effects of ACT on motor and cognitive function of persons with stroke induced deficits have not been investigated.

Purpose: To compare the acute effects of ACT, voluntary cycling (VC), and no cycling (NC) on upper and lower extremity motor function and executive function in adults with chronic stroke (age: 60 ± 16 years; months since stroke: 96 ± 85).

Methods: Twenty-two participants (gender: female = 6, male = 16; types: ischemic = 12, hemorrhagic = 10; sides: left lesion = 15, right lesion = 7) completed one session of ACT, one session of VC and one session of NC on separate days using a 3 x 3 crossover design.

Results: ACT lead to greater improvements in lower and upper extremity function on the paretic and non-paretic side than VC or NC (all p < 0.05), except in the non-paretic lower extremity where ACT and VC produced similar improvement (both p < 0.05). ACT and VC, but not NC, were associated with improvements in inhibition (p < 0.05). A positive relationship between cadence and motor function (P < 0.05) was found. Ratings of perceived exertion shared an inverted-U shaped relationship with measures of processing speed (p < 0.05) and a negative linear relationship with measures of executive function (p < 0.05).

Conclusion: ACT appears to benefit paretic and non-paretic motor function globally whereas the benefits of VC are more task specific. Faster cycling cadence was associated with greater improvements in global motor function. ACT and VC seem to carry similar acute benefits in inhibition.
ContributorsHolzapfel, Simon D (Author) / Ringenbach, Shannon D (Thesis advisor) / Bosch, Pamela R (Committee member) / Lee, Chong D (Committee member) / Der Ananian, Cheryl A (Committee member) / Hooker, Steven P (Committee member) / Arizona State University (Publisher)
Created2017
157341-Thumbnail Image.png
Description
Through three investigations, this dissertation examined properties of the family and early care and education center (ECEC) environments related to preschool-aged children’s cardiovascular fitness (CVF) and gross locomotor skills (GLS). Investigation one used a systematic review and meta-analysis to synthesize the effectiveness of school-based interventions at improving CVF, in preschool-aged

Through three investigations, this dissertation examined properties of the family and early care and education center (ECEC) environments related to preschool-aged children’s cardiovascular fitness (CVF) and gross locomotor skills (GLS). Investigation one used a systematic review and meta-analysis to synthesize the effectiveness of school-based interventions at improving CVF, in preschool-aged children. For investigations two and three product- and process-based measures of GLS were collected from children in ECECs (n=16), using the progressive aerobic cardiovascular endurance run (PACER; n=144) and the CHAMPS motor skill protocol (CMSP; n=91), respectively. Investigation two and three examined family factors and ECEC factors for associations with measures of GLS, respectively.

Investigation one revealed a moderate-to-large effect size for school-based interventions (n=10) increasing CVF (g=0.75; 95%CI [0.40-1.11]). Multi-level interventions (g=.79 [0.34-1.25]) were more effective than interventions focused on the individual (g=0.67 [0.12-1.22]). In investigations two and three children (78.3% Hispanic; mean ± SD age 53.2±4.5 months) completed a mean ± SD 3.7±2.3 PACER laps and 19.0±5.5 CSMP criteria. Individual and family factors associated with PACER laps included child sex (B=-0.96, p=0.03) and age (B=0.17, p<0.01), parents’ promotion of inactivity (B=0.66, p=0.08) and screen time (B=0.65, p=0.05), and parents’ concern for child’s safety during physical activity (B=-0.36, p=0.09). Child age (B=0.47, p<0.01) and parent employment (B=2.29, p=0.07) were associated with CMSP criteria. At the ECEC level, policy environment quality (B=-0.17; p=0.01) was significantly associated with number of PACER laps completed. Outdoor play environment quality (B=0.18; p=0.03), outdoor play equipment total (B=0.32; p<0.01) and screen time environment quality (B=0.60; p=0.02) were significantly associated with CMSP criteria. Researchers, ECEC teachers and policy makers should promote positive environmental changes to preschool-aged children’s family and ECEC environments, as these environments have the potential to improve CVF and GLS more than programs focused on the child alone.
ContributorsSzeszulski, Jacob (Author) / Lee, Rebecca E (Thesis advisor) / Buman, Matthew P (Committee member) / Hooker, Steven P (Committee member) / Vega-Lopez, Sonia (Committee member) / Shaibi, Gabriel Q (Committee member) / Arizona State University (Publisher)
Created2019