Matching Items (2)
Filtering by

Clear all filters

155787-Thumbnail Image.png
Description
Galaxy formation is a complex process with aspects that are still very uncertain or unknown. A mechanism that has been utilized in simulations to successfully resolve several of these outstanding issues is active galactic nucleus (AGN) feedback. Recent work has shown that a promising method for directly measuring this energy

Galaxy formation is a complex process with aspects that are still very uncertain or unknown. A mechanism that has been utilized in simulations to successfully resolve several of these outstanding issues is active galactic nucleus (AGN) feedback. Recent work has shown that a promising method for directly measuring this energy is by looking at small increases in the energy of cosmic microwave background (CMB) photons as they pass through ionized gas, known as the thermal Sunyaev-Zel’dovich (tSZ) effect.

In this work, I present stacked CMB measurements of a large number of elliptical galaxies never before measured using this method. I split the galaxies into two redshift groups, "low-z" for z=0.5-1.0 and “high-z” for z=1.0-1.5. I make two independent sets of CMB measurements using data from the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), respectively, and I use data from the Planck telescope to account for contamination from dust emission. With SPT I find average thermal energies of 7.6(+3.0/−2.3) × 10^60 erg for 937 low-z galaxies, and 6.0(+7.7/−6.3) × 10^60 erg for 240 high-z galaxies. With ACT I find average thermal energies of 5.6(+5.9/−5.6) × 10^60 erg for 227 low-z galaxies, and 7.0(+4.7/−4.4) × 10^60 erg for 529 high-z galaxies.

I then attempt to further interpret the physical meaning of my observational results by incorporating two large-scale cosmological hydrodynamical simulations, one with (Horizon-AGN) and one without (Horizon-NoAGN) AGN feedback. I extract simulated tSZ measurements around a population of galaxies equivalent to those used in my observational work, with matching mass distributions, and compare the results. I find that the SPT measurements are consistent with Horizon-AGN, falling within 0.4σ at low-z and 0.5σ at high-z, while the ACT measurements are very different from Horizon-AGN, off by 6.9σ at low-z and 14.6σ at high-z. Additionally, the SPT measurements are loosely inconsistent with Horizon-NoAGN, off by 1.8σ at low-z but within 0.6σ at high-z, while the ACT measurements are loosely consistent with Horizon-NoAGN (at least much more so than with Horizon-AGN), falling within 0.8σ at low-z but off by 1.9σ at high-z.
ContributorsSpacek, Alexander Edward (Author) / Scannapieco, Evan (Thesis advisor) / Bowman, Judd (Committee member) / Butler, Nat (Committee member) / Groppi, Chris (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2017
171973-Thumbnail Image.png
Description
Nebular emission-lines offer a powerful tool for studying the physical properties and chemical compositions of galaxies in the near and distant universe. They are excellent tracers of star formation activity in galaxies as well as efficient probes of intergalactic medium in the early universe. This dissertation presents findings from three

Nebular emission-lines offer a powerful tool for studying the physical properties and chemical compositions of galaxies in the near and distant universe. They are excellent tracers of star formation activity in galaxies as well as efficient probes of intergalactic medium in the early universe. This dissertation presents findings from three different studies of emission-line galaxies (a.k.a. line emitters) at low and high redshifts, based on imaging and spectroscopic observations. The first study explores Hα emitters at z ~ 0.6 from the Cosmic Deep And Wide Narrow-band (DAWN) survey, providing robust measurements of the Hα luminosity function (LF) and the star-formation rate density (SFRD) at z ~ 0.6. The effects of different dust-extinction corrections on the measured LF were also investigated in this study. Owing to the observing strategy employed in this survey, this study demonstrates the importance of performing deep and wide-field observations, in order to robustly constrain the entire LF. In the second study, 21 Lyman-α emitter (LAE) candidates at z ~ 7 from the Lyman-Alpha Galaxies in the Epoch of Reionization (LAGER) survey were followed up spectroscopically, using Low Resolution Imaging Spectrometer (LRIS) on the Keck telescope. 15 of these were confirmed to be LAEs, obtaining a spectroscopic confirmation success rate of ~ 80% for LAGER LAE candidates. Apart from Lyman- α, no other rest-frame ultra-violet (UV) nebular lines were detected, with a 2σ upper limit for the ratio of NV/Lyα ≲ 0.27. These confirmations help validate the neutral Hydrogen fraction estimates from LAGER, which is consistent with a fully ionized universe at z ~ 7. The final study investigated the presence of black hole/active galactic nuclei (AGN) signatures among Green Pea (GP) galaxies, using mid-infrared (MIR) observations from the Wide-field Infrared Survey Explorer (WISE) mission. 31 GPs were selected as candidate AGN based on a stringent MIR color-color diagnostic including two GPs exhibiting notable variability in the shorter two WISE bandpasses. Given that GPs are one of the best analogs of high-redshift galaxies, findings from this study suggest that AGN activity could be responsible for the hard ionizing radiation observed in some GPs, which has crucial implications on the sources likely to have contributed towards cosmic reionization.
ContributorsHarish, Santosh Mudigundam (Author) / Rhoads, James E. (Thesis advisor) / Jacobs, Daniel C. (Thesis advisor) / Malhotra, Sangeeta (Committee member) / Bowman, Judd (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2022