Matching Items (4)
Filtering by

Clear all filters

157133-Thumbnail Image.png
Description
Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$)

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$) particles.

Such plasmas are called \textit{chiral}.

The effects include non-dissipative currents in external fields that could be present

even in quasi-equilibrium, such as the chiral magnetic (CME) and separation (CSE)

effects, as well as a number of inherently chiral collective modes

called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from

hot plasma filling the early Universe, to dense matter in neutron stars,

to electronic band structures in Dirac and Weyl semimetals, to quark-gluon plasma

produced in heavy-ion collisions.

The main focus of this dissertation is a search for traces of chiral physics

in the spectrum of collective modes in chiral plasmas.

I start from relativistic chiral kinetic theory and derive

first- and second-order chiral hydrodynamics.

Then I establish key features of an equilibrium state that describes many

physical chiral systems and use it to find the full spectrum of collective modes

in high-temperature and high-density cases.

Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant

dissipative chiral hydrodynamics and the calculation of the spectrum of collective

modes in chiral plasmas.

It is found that the dissipative effects and dynamical electromagnetism play

an important role in most cases.

In particular, it is found that both the CMW and the CVW are heavily damped by the usual

Ohmic dissipation in charged plasmas and the diffusion effects in neutral plasmas.

These findings prompt a search for new physical observables in heavy-ion collisions,

as well as a revision of potential applications of chiral theories in

cosmology and solid-state physics.
ContributorsRybalka, Denys (Author) / Shovkovy, Igor (Thesis advisor) / Lunardini, Cecilia (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2019
171826-Thumbnail Image.png
Description
Information about the elemental composition of a planetary surface can be determined using nuclear instrumentation such as gamma-ray and neutron spectrometers (GRNS). High-energy Galactic Cosmic Rays (GCRs) resulting from cosmic super novae isotropically bombard the surfaces of planetary bodies in space. When GCRs interact with a body’s surface, they can

Information about the elemental composition of a planetary surface can be determined using nuclear instrumentation such as gamma-ray and neutron spectrometers (GRNS). High-energy Galactic Cosmic Rays (GCRs) resulting from cosmic super novae isotropically bombard the surfaces of planetary bodies in space. When GCRs interact with a body’s surface, they can liberate neutrons in a process called spallation, resulting in neutrons and gamma rays being emitted from the planet’s surface; how GCRs and source particles (i.e. active neutron generators) interact with nearby nuclei defines the nuclear environment. In this work I describe the development of nuclear detection systems and techniques for future orbital and landed missions, as well as the implications of nuclear environments on a non-silicate (icy) planetary body. This work aids in the development of future NASA and international missions by presenting many of the capabilities and limitations of nuclear detection systems for a variety of planetary bodies (Earth, the Moon, metallic asteroids, icy moons). From bench top experiments to theoretical simulations, from geochemical hypotheses to instrument calibrations—nuclear planetary science is a challenging and rapidly expanding multidisciplinary field. In this work (1) I describe ground-truth verification of the neutron die-away method using a new type of elpasolite (Cs2YLiCl6:Ce) scintillator, (2) I explore the potential use of temporal neutron measurements on the surface of Titan through Monte-Carlo simulation models, and (3) I report on the experimental spatial efficiency and calibration details of the miniature neutron spectrometer (Mini-NS) on board the NASA LunaH-Map mission. This work presents a subset of planetary nuclear science and its many challenges in humanity's ongoing effort to explore strange new worlds.
ContributorsHeffern, Lena Elizabeth (Author) / Hardgrove, Craig (Thesis advisor) / Elkins-Tanton, Linda (Committee member) / Parsons, Ann (Committee member) / Garvie, Laurence (Committee member) / Holbert, Keith (Committee member) / Lyons, James (Committee member) / Arizona State University (Publisher)
Created2022
171920-Thumbnail Image.png
Description
Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It

Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It is shown that multiple scattering distributions from Molière’s scattering law can be convolved by depth for accurate numerical calculation of angular distributions in several example materials. This obviates the need for correction factors to the analytic solution and its approximations. It is also shown that numerically solving Molière’s scattering law in terms of the complete (non-small angle) differential cross section and large angle approximations extends the validity of Molière theory to large angles. To calculate probability energy loss distributions, Landau-Vavilov theory is adapted to Fourier transforms and extended to very thick targets through convolution over the probability energy loss distributions in each depth interval. When the depth is expressed in terms of the continuous slowing down approximation (CSDA) the resulting probability energy loss distributions rely on the mean excitation energy as the sole material dependent parameter. Through numerical calculation of the CSDA over the desired energy loss, this allows the energy loss cross section to vary across the distribution and accurately accounts for broadening and skewness for thick targets in a compact manner. An analytic, Fourier transform solution to Vavilov’s integral is shown. A single scattering nuclear model that calculates large angle dose distributions that have a similar functional form to FLUKA (FLUktuierende KAskade) Monte Carlo, is also introduced. For incorporation into Monte Carlo or a treatment planning system, lookup tables of the number of scattering events or cross sections for different clinical energies may be used to determine angular or energy loss distributions.
ContributorsBrosch, Ryan Michael (Author) / Rez, Peter (Thesis advisor) / Alarcon, Ricardo O (Thesis advisor) / Vachaspati, Tanmay (Committee member) / Treacy, Michael M.J. (Committee member) / Arizona State University (Publisher)
Created2022
Description
Part I – I analyze a database of Smoothed Particle Hydrodynamics (SPH) simulations of collisions between planetary bodies and use the data to define semi-empirical models that reproduce remant masses. These models may be leveraged when detailed, time-dependent aspects of the collision are not paramount, but analytical intuition or a

Part I – I analyze a database of Smoothed Particle Hydrodynamics (SPH) simulations of collisions between planetary bodies and use the data to define semi-empirical models that reproduce remant masses. These models may be leveraged when detailed, time-dependent aspects of the collision are not paramount, but analytical intuition or a rapid solution is required, e.g. in ‘N-body simulations’. I find that the stratification of the planet is a non-negligible control on accretion efficiency. I also show that the absolute scale (total mass) of the collision may affect the accretion efficiency, with larger bodies more efficiently disrupting, as a function of gravitational binding energy. This is potentially due to impact velocities above the sound speed. The interplay of these dependencies implies that planet formation, depending on the dynamical environment, may be separated into stages marked by differentiation and the growth of planets more massive than the Moon.

Part II – I examine time-resolved neutron data from the Dynamic Albedo of Neutrons (DAN) instrument on the Mars Science Laboratory (MSL) Curiosity rover. I personally and independently developed a data analysis routine (described in the supplementary material in Chapter 2) that utilizes spectra from Monte Carlo N-Particle Transport models of the experiment and the Markov-chain Monte Carlo method to estimate bulk soil/rock properties. The method also identifies cross-correlation and degeneracies. I use data from two measurement campaigns that I targeted during remote operations at ASU. I find that alteration zones of a sandstone unit in Gale crater are markedly elevated in H content from the parent rock, consistent with the presence of amorphous silica. I posit that these deposits were formed by the most recent aqueous alteration events in the crater, since subsequent events would have produced matured forms of silica that were not observed. I also find that active dunes in Gale crater contain minimal water and I developed a Monte Carlo phase analysis routine to understand the amorphous materials in the dunes.
ContributorsGabriel, Travis Saint James (Author) / Asphaug, Erik I (Thesis advisor) / Hardgrove, Craig (Thesis advisor) / Sharp, Thomas (Committee member) / Zolotov, Mikhail (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2019