Matching Items (2)
Filtering by

Clear all filters

155143-Thumbnail Image.png
Description
The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio of the proton \(\mu G_E/G_M\) extracted from polarization observables in

The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio of the proton \(\mu G_E/G_M\) extracted from polarization observables in polarized electron-proton scattering. Polarized electron-proton scattering experiments have revealed a significant decrease in \(\mu G_E/G_M\) at large \(Q^2\), in contrast to previous measurements from unpolarized electron-proton scattering. The commonly accepted hypothesis is that the discrepancy in the form factor ratio is due to neglected higher-order terms in the elastic electron-proton scattering cross section, in particular the two-photon exchange amplitude.

The goal of OLYMPUS was to measure the two-photon exchange contribution by measuring the positron-proton to electron-proton elastic scattering cross section ratio, \(\sigma_{e^+p}/\sigma_{e^-p}\). The two-photon exchange contribution is correlated to the deviation of the cross section ratio from unity.

In 2012, the OLYMPUS experiment collected over 4 fb\(^{-1}\) of \(e^+p\) and \(e^-p\) scattering data using electron and positron beams incident on a hydrogen gas target. The scattered leptons and protons were measured exclusively with a large acceptance spectrometer. OLYMPUS observed a slight rise in \(\sigma_{e^+p}/\sigma_{e^-p}\) of at most 1-2\% over a \(Q^2\) range of \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). This work discusses the motivations, experiment, analysis method, and the preliminary results for the cross section ratio as measured by OLYMPUS.
ContributorsIce, Lauren (Author) / Alarcon, Ricardo O (Thesis advisor) / Dugger, Michael (Committee member) / Lebed, Richard (Committee member) / Ritchie, Barry (Committee member) / Arizona State University (Publisher)
Created2016
Description

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass

In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass nucleon resonances, efficiency-corrected yields of the reaction ep --> e K+ Lambda(1520) --> e K+ K- p in the center-of-mass energy range 2.1-4.5 GeV are constructed utilizing Jefferson Lab's CLAS12 detector. This paper presents the results of an analysis searching for high-mass nucleon resonances in the K Lambda channel between 2.1-4.5 GeV.

ContributorsOsar, Rebecca (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05