Matching Items (2)
Filtering by

Clear all filters

158117-Thumbnail Image.png
Description
Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability

Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability to recognize object categories based on textual descriptions of objects and previous visual knowledge, the research community has extensively pursued the area of zero-shot learning. In this area of research, machine vision models are trained to recognize object categories that are not observed during the training process. Zero-shot learning models leverage textual information to transfer visual knowledge from seen object categories in order to recognize unseen object categories.

Generative models have recently gained popularity as they synthesize unseen visual features and convert zero-shot learning into a classical supervised learning problem. These generative models are trained using seen classes and are expected to implicitly transfer the knowledge from seen to unseen classes. However, their performance is stymied by overfitting towards seen classes, which leads to substandard performance in generalized zero-shot learning. To address this concern, this dissertation proposes a novel generative model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowledge transfer from seen categories to unseen categories. Experiments were conducted on several benchmark datasets to demonstrate the efficacy of the proposed model for both zero-shot learning and generalized zero-shot learning. The dissertation also provides a unique Student-Teacher based generative model for zero-shot learning and concludes with future research directions in this area.
ContributorsVyas, Maunil Rohitbhai (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158233-Thumbnail Image.png
Description
Individuals with voice disorders experience challenges communicating daily. These challenges lead to a significant decrease in the quality of life for individuals with dysphonia. While voice amplification systems are often employed as a voice-assistive technology, individuals with voice disorders generally still experience difficulties being understood while using voice amplification systems.

Individuals with voice disorders experience challenges communicating daily. These challenges lead to a significant decrease in the quality of life for individuals with dysphonia. While voice amplification systems are often employed as a voice-assistive technology, individuals with voice disorders generally still experience difficulties being understood while using voice amplification systems. With the goal of developing systems that help improve the quality of life of individuals with dysphonia, this work outlines the landscape of voice-assistive technology, the inaccessibility of state-of-the-art voice-based technology and the need for the development of intelligibility improving voice-assistive technologies designed both with and for individuals with voice disorders. With the rise of voice-based technologies in society, in order for everyone to participate in the use of voice-based technologies individuals with voice disorders must be included in both the data that is used to train these systems and the design process. An important and necessary step towards the development of better voice assistive technology as well as more inclusive voice-based systems is the creation of a large, publicly available dataset of dysphonic speech. To this end, a web-based platform to crowdsource voice disorder speech was developed to create such a dataset. This dataset will be released so that it is freely and publicly available to stimulate research in the field of voice-assistive technologies. Future work includes building a robust intelligibility estimation model, as well as employing that model to measure, and therefore enhance, the intelligibility of a given utterance. The hope is that this model will lead to the development of voice-assistive technology using state-of-the-art machine learning models to help individuals with voice disorders be better understood.
ContributorsMoore, Meredith Kay (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berisha, Visar (Committee member) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2020