Matching Items (3)
Filtering by

Clear all filters

154951-Thumbnail Image.png
Description
Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting

Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting defects in the PV modules. As many as 86 different defects can occur in a PV module. One of the major defects that can cause significant power loss is the interconnect metallization system (IMS) degradation which is the focus of this thesis. The IMS is composed of cell-interconnect (cell-ribbon interconnect) and string-interconnect (ribbon-ribbon interconnect). The cell interconnect is in turn composed of silver metallization (fingers and busbars) and solder bonds between silver busbar and copper ribbon. Weak solder bonding between copper ribbon and busbar of a cell results in increase of series resistance that in turn affects the fill factor causing a power drop. In this thesis work, the results obtained from various non-destructive and destructive experiments performed on modules exposed in three different climates (Arizona - Hot and Dry, Mexico - Warm and Humid, and California - Temperate) are presented. These experiments include light I-V measurements, dark I-V measurements, infrared imaging, extraction of test samples from the modules, peel strength measurements and four-point resistance measurements. The extraction of test samples was performed using a mechanical method and a chemical method. The merits and demerits of these two methods are presented. A drop of 10.33% in fill factor was observed for a 0.05Ω increase in the series resistance of the modules investigated in this work. Different combinations in a cell that can cause series resistance increase were considered and their effect on fill factor were observed using four-point probe experiments. Peel test experiments were conducted to correlate the effect of series resistance on the ribbon peel strength. Finally, climate specific thermal modelling was performed for 4 different sites over 20 years in order to calculate the accumulated thermal fatigue and also to evaluate its correlation, if any, with the increase of series resistance.
ContributorsTummala, Abhishiktha (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154820-Thumbnail Image.png
Description
In recent years, solar photovoltaic (PV) industry has seen lots of improvements in technology and of growth in market with crystalline silicon PV modules being the most widely used technology. Plant inspections are gaining much importance to identify and quantitatively determine the impacts of various visual defects on performance. There

In recent years, solar photovoltaic (PV) industry has seen lots of improvements in technology and of growth in market with crystalline silicon PV modules being the most widely used technology. Plant inspections are gaining much importance to identify and quantitatively determine the impacts of various visual defects on performance. There are about 86 different types of defects found in the PV modules installed in various climates and most of them can be visually observed. However, a quantitative determination of impact or risk of each of identified defect on performance is challenging. Thus, it is utmost important to quantify the risk for each of the visual defects without any human subjectivity. The best way to quantify the risk of each defect is to perform current-voltage measurements of the defective modules installed in the plant but it requires disruption of plant operation, expensive measuring equipment and intensive human resources. One of the most riskiest and dominant visual defects is encapsulant browning which affects the PV module performance in the form of current degradation. The present study deals with developing an automated image processing tool which can address the issues of human subjectivity on browning level impacting performance. The image processing tool developed in this work can be directly used to quantify the impact of browning on performance without intrusively disconnecting the modules from the plant. In this work, the quantified browning level impact on performance has also been experimentally validated through a correlation study using short-circuit current and reflectance/transmittance measurements of browned PV modules retrieved from aged plants/systems installed in diverse climatic conditions. The primary goal of the image processing tool developed in this work is to determine the performance impact of encapsulant browning without interrupting the plant operation for I-V measurements. The use of image processing tool provides a single numerical value, called browning index (BI), which can accurately quantify browning levels on modules and also correlate with the performance and reflectance/transmittance parameters of the modules.
ContributorsGudla, Sushanth (Author) / Govindasamy, Tamizhmani (Thesis advisor) / Patrick, Phelan E (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
155103-Thumbnail Image.png
Description
The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV

The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV modules fielded in New York (cold climate) over 18 years have been analyzed. All the ten modules were manufactured by the same manufacturer with glass/EVA/cell/EVA/back sheet construction. The activation energy for the encapsulant browning is calculated using the degradation rates of short-circuit current (Isc, the response parameter), weather data (temperature, humidity, and UV, the stress parameters) and different empirical rate models such as Arrhenius, Peck, Klinger and modified Peck models. For the indoor accelerated data, three sets of mini-modules with the same construction/manufacturer as that of the outdoor fielded modules were subjected indoor accelerated weathering stress and the test data were analyzed. The indoor accelerated test was carried out in a weathering chamber at the chamber temperature of 20°C, chamber relative humidity of 65%, and irradiance of 1 W/m2 at 340nm using a xenon arc lamp. Typically, to obtain activation energy, the test samples are stressed at two (or more) temperatures in two (or more) chambers. However, in this work, it has been attempted to do the acceleration testing of eight mini-modules at multiple temperatures using a single chamber. Multiple temperatures in a single chamber were obtained using thermal insulators on the back of the mini-modules. Depending on the thickness of the thermal insulators with constant solar gain from the xenon lamp, different temperatures on the test samples were achieved using a single weathering chamber. The Isc loss and temperature of the mini-modules were continuously monitored using a data logger. Also, the mini-modules were taken out every two weeks and various characterization tests such as IV, QE, UV fluorescence and reflectance were carried out. Activation energy from the indoor accelerated tests was calculated using the short circuit current degradation rate and operating temperatures of the mini-modules. The activation energy for the encapsulant browning obtained from the outdoor field data and the indoor accelerated data are compared and analyzed in this work.
ContributorsVeerendra Kumar, Deepak Jain (Author) / Tamizhmani, Govindasamy (Committee member) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016