Matching Items (2)
Filtering by

Clear all filters

155096-Thumbnail Image.png
Description
Structural stability and performance of structural materials is important for energy production, whether renewable or non renewable, to have uninterrupted energy supply, that is economically feasible and safe. High temperature metallic materials used in the turbines of AORA, an Israel-based clean energy producer, often experience high temperature, high stress and

Structural stability and performance of structural materials is important for energy production, whether renewable or non renewable, to have uninterrupted energy supply, that is economically feasible and safe. High temperature metallic materials used in the turbines of AORA, an Israel-based clean energy producer, often experience high temperature, high stress and foreign object damage (FOD). In this study, efforts were made to study the effects of FOD on the fatigue life of these materials and to understand their failure mechanisms. The foreign objects/debris recovered by AORA were characterized using Powder X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) to identify composition and phases. To perform foreign object damage experiment a gas gun was built and results of XRD and EDS were used to select particles to mimic FOD in lab experiments for two materials of interest to AORA: Hastelloy X and SS 347. Electron Backscattering Diffraction, hardness and tensile tests were also performed to characterize microstructure and mechanical properties. Fatigue tests using at high temperature were performed on dog bone samples with and without FOD and the fracture surfaces and well as the regions affected by FOD were analyzed using Scanning Electron Microscopy (SEM) to understand the failure mechanism. The findings of these study indicate that FOD is causing multiple secondary cracks at and around the impact sites, which can potentially grow to coalesce and remove pieces of material, and the multisite damage could also lead to lower fatigue lives, despite the fact that the FOD site was not always the most favorable for initiation of the fatal fatigue crack. It was also seen by the effect of FOD on fatigue life that SS 347 is more susceptible to FOD than Hastelloy X.
ContributorsDobaria, Nirmal (Author) / Peralta, Pedro (Thesis advisor) / Sieradzki, Karl (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2016
155622-Thumbnail Image.png
Description
Laboratory testing was conducted to quantify strain concentrations adjacent to seams and scratches in high density polyethylene (HDPE) geomembranes. The tensile strain profile of remnants meeting the ASTM criteria for wide-width tensile testing from samples of field seams recovered for construction quality assurance testing was evaluated using digital image correlation

Laboratory testing was conducted to quantify strain concentrations adjacent to seams and scratches in high density polyethylene (HDPE) geomembranes. The tensile strain profile of remnants meeting the ASTM criteria for wide-width tensile testing from samples of field seams recovered for construction quality assurance testing was evaluated using digital image correlation (DIC). Strains adjacent to scratches on laboratory prepared samples loaded in tension were also measured using DIC. The tensile strain in the zone adjacent to a seam and the tensile strain adjacent to a scratch were compared to the tensile strains calculated using theoretical strain concentration factors. The relationship between the maximum tensile strain adjacent to a seam and the global nominal strain in the sample was quantified for textured and smooth geomembranes of common thicknesses. Using statistical analysis of the data, bounds were developed for the allowable nominal tensile strain expected to induce maximum tensile strains adjacent to the seam less than or equal to the typical yield strain of HDPE geomembranes, at several confidence levels. Where nominal strain is the global or average strain applied to the sample and maximum strain is the largest tensile strain induced in the sample.

The reduction in the nominal yield strain due to a scratch in a HDPE geomembrane was also quantified. The yield strain was approximately the same as predicted using theoretical strain concentration factors. The difference in the average measured maximum strains adjacent to the seams of textured and smooth HDPE geomembranes was found to be statistically insignificant. However, maximum strains adjacent to extrusion welded seams were somewhat greater than adjacent to fusion welded seams for nominal strains on the order of 3% to 4%. The results of the testing program suggest that the nominal tensile strain should be limited to 4% around dual hot wedge seams and 3% around extrusion fillet seams to avoid maximum strains equal to 11%, a typical yield strain for HDPE geomembranes.
ContributorsAndresen, Jake (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2017