Matching Items (2)
Filtering by

Clear all filters

155978-Thumbnail Image.png
Description
Though the likelihood is a useful tool for obtaining estimates of regression parameters, it is not readily available in the fit of hierarchical binary data models. The correlated observations negate the opportunity to have a joint likelihood when fitting hierarchical logistic regression models. Through conditional likelihood, inferences for the regression

Though the likelihood is a useful tool for obtaining estimates of regression parameters, it is not readily available in the fit of hierarchical binary data models. The correlated observations negate the opportunity to have a joint likelihood when fitting hierarchical logistic regression models. Through conditional likelihood, inferences for the regression and covariance parameters as well as the intraclass correlation coefficients are usually obtained. In those cases, I have resorted to use of Laplace approximation and large sample theory approach for point and interval estimates such as Wald-type confidence intervals and profile likelihood confidence intervals. These methods rely on distributional assumptions and large sample theory. However, when dealing with small hierarchical datasets they often result in severe bias or non-convergence. I present a generalized quasi-likelihood approach and a generalized method of moments approach; both do not rely on any distributional assumptions but only moments of response. As an alternative to the typical large sample theory approach, I present bootstrapping hierarchical logistic regression models which provides more accurate interval estimates for small binary hierarchical data. These models substitute computations as an alternative to the traditional Wald-type and profile likelihood confidence intervals. I use a latent variable approach with a new split bootstrap method for estimating intraclass correlation coefficients when analyzing binary data obtained from a three-level hierarchical structure. It is especially useful with small sample size and easily expanded to multilevel. Comparisons are made to existing approaches through both theoretical justification and simulation studies. Further, I demonstrate my findings through an analysis of three numerical examples, one based on cancer in remission data, one related to the China’s antibiotic abuse study, and a third related to teacher effectiveness in schools from a state of southwest US.
ContributorsWang, Bei (Author) / Wilson, Jeffrey R (Thesis advisor) / Kamarianakis, Ioannis (Committee member) / Reiser, Mark R. (Committee member) / St Louis, Robert (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2017
156264-Thumbnail Image.png
Description
The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by the cross-classification of a large number of variables, these goodness-of-fit statistics may have lower power and inaccurate Type I error

The Pearson and likelihood ratio statistics are well-known in goodness-of-fit testing and are commonly used for models applied to multinomial count data. When data are from a table formed by the cross-classification of a large number of variables, these goodness-of-fit statistics may have lower power and inaccurate Type I error rate due to sparseness. Pearson's statistic can be decomposed into orthogonal components associated with the marginal distributions of observed variables, and an omnibus fit statistic can be obtained as a sum of these components. When the statistic is a sum of components for lower-order marginals, it has good performance for Type I error rate and statistical power even when applied to a sparse table. In this dissertation, goodness-of-fit statistics using orthogonal components based on second- third- and fourth-order marginals were examined. If lack-of-fit is present in higher-order marginals, then a test that incorporates the higher-order marginals may have a higher power than a test that incorporates only first- and/or second-order marginals. To this end, two new statistics based on the orthogonal components of Pearson's chi-square that incorporate third- and fourth-order marginals were developed, and the Type I error, empirical power, and asymptotic power under different sparseness conditions were investigated. Individual orthogonal components as test statistics to identify lack-of-fit were also studied. The performance of individual orthogonal components to other popular lack-of-fit statistics were also compared. When the number of manifest variables becomes larger than 20, most of the statistics based on marginal distributions have limitations in terms of computer resources and CPU time. Under this problem, when the number manifest variables is larger than or equal to 20, the performance of a bootstrap based method to obtain p-values for Pearson-Fisher statistic, fit to confirmatory dichotomous variable factor analysis model, and the performance of Tollenaar and Mooijaart (2003) statistic were investigated.
ContributorsDassanayake, Mudiyanselage Maduranga Kasun (Author) / Reiser, Mark R. (Thesis advisor) / Kao, Ming-Hung (Committee member) / Wilson, Jeffrey (Committee member) / St. Louis, Robert (Committee member) / Kamarianakis, Ioannis (Committee member) / Arizona State University (Publisher)
Created2018